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Abstract—Digital reconstruction of neuronal structures is 
very important to neuroscience research. Many existing 
reconstruction algorithms require a set of good seed points. 3D 
neuron critical points, including terminations, branch points and 
cross-over points, are good candidates for such seed points. 
However, a method that can simultaneously detect all types of 
critical points has barely been explored. 

In this work, we present a method to simultaneously detect all 
3 types of 3D critical points in neuron microscopy images, based 
on a spherical-patches extraction (SPE) method and a 2D 
multi-stream convolutional neural network (CNN). SPE uses a 
set of concentric spherical surfaces centered at a given critical 
point candidate to extract intensity distribution features around 
the point. Then, a group of 2D spherical patches is generated by 
projecting the surfaces into 2D rectangular image patches 
according to the orders of the azimuth and the polar angles. 
Finally, a 2D multi-stream CNN, in which each stream receives 
one spherical patch as input, is designed to learn the intensity 
distribution features from those spherical patches and classify 
the given critical point candidate into one of four classes: 
termination, branch point, cross-over point or non-critical point. 
Experimental results confirm that the proposed method 
outperforms other state-of-the-art critical points detection 
methods. The critical points based neuron reconstruction results 
demonstrate the potential of the detected neuron critical points 
to be good seed points for neuron reconstruction. Additionally, 
we have established a public dataset dedicated for neuron critical 
points detection, which has been released along with this paper. 

 
Index Terms—Critical points detection, neuron reconstruction, 

deep learning, microscopy images. 

I. INTRODUCTION 

HE morphology reconstruction of neuronal structures 
from microscopy images plays a critical role in the 

understanding of how the brain works [1][2]. The study of 3D 
neuron morphology allows for the understanding of neuronal 
outgrowth, regeneration, or networking. This is important to 
 

(a) Terminations (b) Branch Points (c) Cross-over Points  
Fig. 1. Examples of critical points of a neuron and its surrounding neuronal 
structures in a microscopy image of a whole mouse brain. (a) Terminations. (b) 
Branch points. (c) Cross-over points. Vaa3D [9] was used for visualization. 

the research and treatment of central nervous system (CNS) 
diseases such as Alzheimer’s and Parkinson’s [3]. Artificial 
intelligence (AI) techniques, for example artificial neural 
networks, are also inspired by the interconnectivities of the 
neurons. Therefore, obtaining a blueprint of the brain’s 
network architecture will also help to the research and 
development of more advanced AI systems. In order to 
statistically analyze the neuronal cell and network properties 
of neuronal structures in microscopy images, reliable digital 
neuron reconstruction (tracing) of the neuronal structures is 
required. 

In the past few decades, many algorithms and tools have 
been developed for the digital reconstruction of neuronal 
structures from microscopy images [4][5][6][13]. Many 
existing automatic or semi-automatic reconstruction methods 
rely on the availability and quality of initial seed points. 
Terminations, branch points and cross-over points of neuronal 
structures, collectively called “critical points” in this work, are 
good seed points for neuron reconstruction [3][7]. 
Terminations are the end points of neuron branches, and 
branch points are defined as the junction points of three neuron 
branches. Cross-over points are defined as the points of visual 
intersection of two neuronal structures, falsely suggesting a 
junction of four or more branches1. Terminations and branch 
points are helpful to determine the topology and faithfulness 
of the reconstruction results [8]. While cross-over points help 
to identify the potential wrong connections in the automated 
reconstruction results, which is useful to refine the automated 
neuron reconstruction results or avoid wrong connections 
during the reconstruction procedure. In this paper, we aim at 
simultaneously detecting all 3 types of neuron critical points 
(see Fig. 1 for examples). 

It seems natural to use 3D convolutional neural networks 
(CNNs) to detect neuron critical points in 3D microscopy 
images. However, the additional computational complexity 
(volumetric domain) and data sparsity introduce significant  
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1A more detailed illustration of the neuron critical points can be found in 
Supplementary Material. 
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Fig. 2. Overall diagram of the proposed neuron critical points detection method in neuron microscopy images. Given an input 3D neuron image, the first step is to 
detect a set of critical point candidates in the image. Then, the spherical-patches extraction method is performed at these points to generate spherical patches. Finally, 
a multi-stream 2D CNN is designed to learn from those spherical patches how to classify the given critical point candidate into termination, branch point, cross-over 
or non-critical point. 

challenges (the ratio of foreground to background of the 
neurons is less than 5% in the test microscopy images of this 
work). Therefore, many efforts have been made to deal with 
volumetric data by using 2D CNNs [7][10][11][12]. 
Especially for neuron image analysis, the volume of the 
acquired brain images often contains 20 to 30 or more 
teravoxels [13], which requires high efficiency for either 
critical points detection approaches or automatic neuron 
reconstruction algorithms. Therefore, 2D CNNs with higher 
efficiency and lower computational cost are much more 
preferable than 3D CNNs for neuron image analysis. 

In this work, we present a method to simultaneously detect 
all 3 types of 3D critical points in neuron microscopy images, 
based on the spherical-patches extraction (SPE) method and a 
2D multi-stream CNN. SPE uses a set of concentric spherical 
surfaces, with different radii, centered at a given critical point 
candidate to extract intensity distribution features around the 
point. Specifically, each spherical surface is geometrically 
transformed into a 2D rectangular image patch, whose 
intensity at any point corresponds to the image intensity on the 
spherical surface for given azimuth and polar angles. Finally, a 
2D multi-stream CNN, in which each stream receives one 
spherical patch as input, is designed to learn the intensity 
distribution features from those spherical patches. And the 
given critical point candidates are classified into termination, 
branch point, cross-over point or non-critical point. The 
overall diagram of the proposed method is shown in Fig. 2. 

The contribution of this paper mainly resides in the 
following three aspects: 
 The proposed SPE method bridges the gap between 2D 

networks and 3D neuron critical points detection task 
without losing 3D structural and contextual information. 
Many existing methods, for example DeepBranch [7], 
transform the 3D detection task into 2D by generating 
multiple views of an object. However, the way they 
generate the views (e.g., the maximum intensity 
projections) will compress the structural and contextual 
information. Therefore, SPE is more robust when 
handling the dense and complex neuronal structures in 
microscopy images.  

 A multi-stream 2D CNN is designed for the spherical 
patches generated by SPE. Each stream receives a single 
spherical patch at the beginning of the network, aiming at 
fully extracting the multi-scale intensity distribution 
features from each patch. This allows the network to 
better identify the interference of the neighboring 

neuronal structures and background noises. And a feature 
fusion module with attention mechanism is designed to 
aggregate the feature maps of each stream. It can not only 
make full use of the multi-stream features, but also pay 
more attention to the contextual information between the 
streams. To the best of our knowledge, this is the first 
method to detect all 3 types of 3D critical points in 
neuron microscopy images simultaneously. 

 The proposed method is validated quantitatively on the 
public BigNeuron dataset [34], and outperforms the 
compared state-of-the-art methods by about 5% and 1% 
in average F1-measures for terminations and branch 
points detection, respectively. Furthermore, we build a 
more challenging Whole Mouse Brain Sub-image 
(WMBS) dataset dedicated for neuron critical points 
detection, including 34 images extracted from a whole 
mouse brain. Under the same voxel aspect ratio, the 
z-dimensionality of the BigNeuron images is about 100 
voxels, whereas the z-dimensionality of the WMBS 
images is 500 voxels. Consequently, the WMBS images 
contain more complicated neuronal structures and are 
more challenging than the BigNeuron images. The 
experimental results on the WMBS dataset show that the 
proposed method outperforms the compared state- 
of-the-art methods by large margins, about 23% and 27% 
in average F1-measures for terminations and branch 
points detection, respectively. In addition, it is a 
challenging and labor-intensive task to label all the 
(hundreds of) critical points in an image, because of the 
ambiguity of neuronal structures. On the one hand, the 
high degree of mutual occlusion and wiring of neuronal 
structures require multiple times of image rotation to 
precisely label a point. On the other hand, the 
discontinuous or weak signals and the relatively poor 
z-resolution make it hard to find out and recognize the 3D 
critical points. In order to advance and benefit automatic 
whole-brain-scale neuron image analysis, such as 3D 
neuron critical points detection, seed-based automatic 
neuron reconstruction and automatic cross-over 
separation, we have released this dataset along with this 
paper2. 

The remainder of this paper is organized as follows: Section 
II briefly reviews related work, and Section III describes the 
proposed SPE algorithm and the multi-stream 2D CNN. The 

2The dataset is available from https://github.com/chwx08/WBMS/blob/ 
master/README.md. 
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Fig. 3. An overview of SPE. (a) A set of concentric spherical surfaces (different colors indicate different radii) is generated at a non-critical point of neuronal 
structure in a neuron microscopy image. Only four spheres are generated here, for better view. (b) The intensity distribution features extracted by each spherical 
surface. The bold regions on the spheres are regions with high intensity values, which indicate the intersection between the spheres and the foreground region of the 
neuronal structure. (c) Typical spherical patches extracted from a non-critical point, a branch point, a termination and a cross-over point, respectively. It can be 
clearly seen that the spherical patches of a branch point have three strong responses, whereas those of a termination, a non-critical point and a cross-over point have 
one, two and four strong responses, respectively. 

experiments on neuron microscopy images are presented in 
Section IV. Finally, we draw our conclusions in Section V. 

II. RELATED WORK 

Seed-Based Neuron Reconstruction Methods: Many 
neuron reconstruction methods are initialized by seed points. 
For example, graph theoretic algorithms have been used to 
establish connectivity between seeds on or near the centerlines 
of neuronal structures [14][15]. Methods in [6][16] trace the 
neuronal structures based on a set of seeds with high 
‘tubularity’ value. The method in [17] traces the neuronal 
structures based on a set of marked point process (MPP) 
objects on the neuronal structures. An active contour based 
method is used in [18] to trace the neurons based on seed 
points along the centerlines. Rivulet [19] and its improved 
version [20] iteratively trace the neuron fibers back from 
geodetic furthest points. Methods in [4][21] can trace the 
neuronal structures with one seed point on the neuron soma or 
cell body. 

Critical Points Detection Methods: Although there are 
existing methods for termination detection, junction detection 
and dendritic spines detection of tree-like structures 
[22][23][24], a method that can simultaneously detect all types 
of critical points has barely been explored for neuron 
reconstruction. Neuron Pinpointer [8] was proposed to detect 
2D neuron terminations and junctions in fluorescence 
microscopy images. This algorithm is based on feature 
extraction and analysis of an angular profile, in combination 
with a two-stage fuzzy-logic system. A multiscale 
ray-shooting model [3] was proposed to detect 3D neuron 
terminations by analyzing the intensity distributions around 
any termination candidates. DeepBranch [7] was proposed to 
detect branch points of biomedical images including neuron 
images, bronchus images and blood vessel images. This 
two-stage deep-learning based method improves the 3D U-Net 
[25] to segment the candidate region of branch points and 
proposes a multi-scale multi-view CNN to detect branch 
points from the branch point candidates. 

III. METHOD 

A. Critical Point Candidates Selection 

Before using SPE, to reduce computational cost, a set of 
critical point candidates is selected, containing pixel locations 
( , , )x y z  in an input image I  that should be taken into 
consideration. In this paper, we select the points on the 
skeleton of the neuronal structures in I  as critical point 
candidates. To extract the skeleton, an improved V-Net [26] 
designed for neuron microscopy image segmentation is firstly 
employed to segment I  and output a binarized image BI . The 
improved V-Net is chosen because of two reasons. Firstly, it is 
designed for neuron image segmentation and the network 
architecture is improved to accommodate the unbalanced 
image sizes in horizontal, vertical and z axes. Secondly, the 
automatic data labeling method used in this work is able to 
generate the training samples efficiently. After segmentation, 
a 3D skeletonization algorithm [27] is employed to find the 
skeleton of the neurites in BI . Finally, all the nodes on the 
skeleton are considered as critical point candidates where the 
SPE method will be applied. Other methods [28][29][30][31] 
can also be used to segment the neuronal structures or detect 
centerline directly. Note that BI  is used only for critical point 
candidates selection, and we still process the input image I  in 
the remaining steps to avoid possible artifacts introduced by 
the segmentation step, for example, sharp spurs on the surface 
of the neuronal structures. 

B. Spherical-Patches Extraction (SPE) 

The design of SPE is inspired by the elastic boundary 
projection (EBP) [32] which was proposed for organ 
segmentation in volumetric medical images. We use the idea 
of projecting 3D information into 2D rectangle patches, on 
which 2D networks can be applied. However, EBP cannot be 
directly used to detect neuron critical points for two reasons. 
Firstly, EBP only uses one spherical surface to extract the 
intensity distribution features at each seed point. Due to the 
large difference between the shape of the organs and neurons, 
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Fig. 4. The overall architecture of the multi-stream CNN for neuron critical 
points detection. Every single spherical patch is fed to a single stream (Conv 
Block A). Then, the output feature maps of the streams are aggregated by a 
trainable feature fusion module. The fused feature maps are then fed to Conv 
Block B. Finally, an output layer produces a 4-dimensional vector indicating 
for each of the four classes the probability that the point belongs to that class. 

only one spherical surface is not applicable to detect the 
critical points in 3D neuron images, because it is not robust to 
the interference of the background noises and other 
neighboring neuronal structures. Secondly, EBP iteratively 
adjusts the spherical surface until it converges to the object 
boundary. This time-consuming step is not suitable for the 
large-scale neuron images. Therefore, we improve EBP to 
SPE by generating a set of spheres with fixed radii at every 
critical point candidate. The multiple spherical surfaces can 
extract sufficient intensity distribution features without losing 
contextual information. This ensures the robustness and 
performance of our method. And SPE is more efficient than 
EBP, because there is no need to adjust the spherical surfaces. 
In the experiments, we demonstrate the effectiveness of SPE 
by comparing it with other existing patch-extraction methods 
(Section IV-F). Here we present the SPE method in detail. 

Taking a critical point candidate p  at location ( , , )x y z  as a 
start, the first step of SPE is generating N  concentric 
spherical surfaces, with radii { | 1,..., }iR r i N  , centered at 
p  to extract intensity distribution features around it (Fig. 3(a)). 

In the spherical coordinate system, any point mp  belonging to 
this set of spherical surfaces can be determined by point p  
and 

1 2
( , , )m m ir  , where 

1
(0,2 ]m   is the azimuth angle 

and 
2

[ / 2, / 2]m     is the polar angle. In this paper, the 
azimuth angles are uniformly distributed, i.e., 

1 12 /m am M  , where aM  is the number of azimuth angles 
and 1 1,2,..., am M . Following the suggestions of the authors 
in [32], the polar angles have a denser distribution near the 
equator, i.e., 

2 2cos(2 / ( 1) 1) / 2m parc m M     , where 

pM  is the number of polar angles and 2 1,2,..., Pm M , so that 
the points are approximately uniformly distributed over the 
spherical surface. Given the settings of 

1m ,
2m  and R , all 

the spherical surfaces can be generated. 
The second step is using the spherical surfaces to extract the 

intensity distributions features from a given image I , as 
shown in Fig. 3(b). As the spherical surfaces are generated in 
the spherical coordinate system, their coordinates need to be 
transformed to the Cartesian coordinate system, because the 
voxel locations in I  are indicated by the Cartesian coordinate 
system. The coordinates transform is, 

1 2

1 2

2

cos( ) cos( )

sin( ) cos( )

sin( )

m i m m

m i m m

m i m

x x r

y y r

z z r

 

 



  


 


 

                  (1) 

where ( , , )m m mx y z  are the Cartesian coordinates of mp .  
The third step is to project the intensity distributions on the 

spherical surfaces to 2D spherical patches (Fig. 3(c)). 

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)  
Fig. 5. Illustrations of the spherical patches at different locations. For the 
clarity of illustration, we show the 2D views of the 3D neuronal structures and 
use the colored rings to represent the 3D spherical surfaces. (a1) A branch 
point without other neuronal structures nearby. (a2)-(a4) The spherical 
patches extracted by the blue, green and red spherical surfaces in (a1), 
respectively. (b1) Two close neuronal structures. (b2)-(b4) The spherical 
patches extracted by the blue, green and red spherical surfaces in (b1), 
respectively. The purple arrow indicates the location where the spherical 
surface touches the neighboring neuronal structure. The yellow arrows 
indicate the spots caused by the neighboring neuronal structure. 

Specifically, denote iS  by a single spherical surface with 
radius ir , the intensity values in iS  will be projected to a 2D 
rectangle called spherical patch a pM M

i


P  , where each row 

is arranged by the order of 
1m  and each column is arranged 

by the order of 
2m , i.e., the intensity value at 

1 2
( , , )m m m ip r   

will be projected to the 1m th row and 2m th column of iP . 
Finally, a total number of N  spherical patches 

{ | 1,..., }i i N P are extracted from p . 
By using SPE, we transform the intensity distribution of a 

3D region of interest into multiple 2D patches which present 
the intensity distribution in a different way, making the 
features of different types of critical points more obvious than 
those in the original image. From Fig. 3(c), we can see that iP  
at different types of points will show different patterns. 
Therefore, 2D CNNs can be used to learn the intensity 
distribution features from the spherical patches and classify 
neuron critical points based on the different patterns 
characterizing different types of points in the patches.  

C. 2D Multi-Stream CNN for Neuron Critical Points Detection 

In this paper, we design a multi-stream CNN to learn the 
intensity distribution features from these spherical patches, 
aiming at classifying any critical point candidate p  based on 
different patterns between different types of critical points. 
The network architecture is shown in Fig. 4. At the beginning 
of the multi-stream network, each spherical patch iP  is 
separately fed to a single stream. The motivation of using the 
multi-stream setting is that the patches at different scales of the 
same point may show different patterns, due to the 
complicated and rich hierarchy of the neuronal structures. And 
only one stream of the CNN is not effective enough, because 
all the patches are fused together at the first convolution layer 
where only low-level features can be extracted.  

For further explanation, in Fig. 5(b1)-(b4) we illustrate the 
patches extracted at the location where two neuronal structures 
are close to each other. We can observe that the patches in Fig. 
5(b3) and (b4) show similar patterns as branch points (i.e., 
three strong responses), because the spherical surfaces touch 
the nearby neuronal structure. However, they are still different 
from the real branch point patches in Fig. 5(a3) and (a4), in 

Authorized licensed use limited to: McMaster University. Downloaded on November 01,2020 at 14:05:39 UTC from IEEE Xplore.  Restrictions apply. 



0278-0062 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2020.3031289, IEEE
Transactions on Medical Imaging

 

5 

(d) Output Module

Input
(4×4×160)

1×1 Conv
(640)

Global Average 
Pooling

4×4×160

4×4×640

1×1×640

1×1 Conv
(4)

1×1×4

Softmax
(classes 4)

(c) Conv Block B

Inverted Residual 
Block

(96 strides 2)

Input
(16×16×96)

8×8×96

Inverted Residual 
Block

(160 strides 2)

4×4×160

16×16×96

(a) Conv Block A

Input
(64×64×1)

Inverted Residual 
Block

(32 strides 2)

2×2 Max Pooling
(stride 2)

64×64×1

3×3 Conv
(16)

64×64×16

32×32×16

16×16×32

(b) Feature Fusion Module

Concatenation
(N@16×16×32)

16×16×32N

1×1 Conv
(96)

 Squeeze-and-
Excite Module

Hard swish 
activation

16×16×96

16×16×96

Multiplication

 
Fig. 6. The schemas for each module in the proposed multi-stream network. Sizes to the right side of each layer summarize the output shape for that layer. The first 
number at the bottom of the convolution layers and inverted residual blocks indicates the number of filter kernels. “N@161632” in (b) means that N feature 
maps of size 161632 are concatenated. 

terms of the spot shape and the similarity between the adjacent 
patches. i) Spot shape: It can be seen from Fig. 5(a3) that the 
shapes of the spots in this patch are similar, because they are 
extracted from the structures of the same branch point. 
However, the shape of the middle spot, indicated by the yellow 
arrow in Fig. 5(b3), is quite different from the other spots, 
because this spot is caused by the neighboring neuronal 
structure; ii) Similarity between the adjacent patches: From 
Fig. 5(a2)-(a4), we can observe that the patches are similar to 
each other at a real branch point. However, the patch in Fig. 
5(b2) shows a different pattern from the patch in Fig. 5(b3), 
i.e., a spot suddenly appears in Fig. 5(b3) due to the 
interference of the neighboring neuronal structure. 
Consequently, the spot shape and the similarity between the 
adjacent patches are important features for the network to 
classify the candidate points. The multi-stream setting enables 
the network to fully extract the intensity distribution features 
from each patch. This way, the network can be more sensitive 
to the spot shape feature than a single-stream network. 
Furthermore, in order to leverage the patch similarity feature, 
we design a feature fusion layer with a trainable attention 
mechanism to aggregate the features extracted by each stream, 
aiming at making full use of the contextual information 
between the streams. In the following, we introduce the design 
of each module. And the schemas for each module are shown 
in Fig. 6. 

Conv Block A: As the network has N  streams before 
being aggregated by the Feature Fusion Module, the design of 
Conv Block A should be shallow and lightweight, considering 
the computational burden and efficiency. Therefore, we use 
the inverted residual block [33][36] which is a lightweight and 
effective module. 

Feature Fusion Module: The feature maps of each stream 
will be aggregated into one stream in this module. However, 
some of the streams may include disturbing information, due 
to the neighboring neuronal structures or strong background 
noises, as shown in Fig. 5(b3). Therefore, we perform feature 
recalibration to selectively weight the importance of the 
streams, by using the squeeze-and-excite module [37]. It is a 
trainable mechanism that uses global information to 
selectively emphasize useful features and suppress less 
important ones. By using the squeeze-and-excite module, the 
network learns to leverage the contextual information among 

the streams and select the discriminative features. This 
improves the performance of the network. Since the Feature 
Fusion Module is able to recalibrate all the feature maps 
generated by the streams, the squeeze-and-excite module is 
not used in Conv Block A, which reduces computational cost. 
After weighting the importance of the feature maps, we fuse 
them and reduce the number of feature maps by a 1 1  
convolution. At the end of this module, h-swish [36] is used as 
non-linearity. The default non-linearity of our network is 
ReLU6 [33], except where stated otherwise. 

Conv Block B: In this module, two inverted residual blocks 
are employed to further extract higher-level features. We 
implement the squeeze-and-excite module after non-linearity 
in these inverted residual blocks, which is different from the 
inverted residual blocks in Conv Block A. 

Output: We use 1 1  convolution with h-swish 
non-linearity to expand the feature maps produced by Conv 
Block B. Finally, a global average pooling followed by 1 1  
convolution is used to generate a 4-dimentional vector 
indicating for each of the four classes the probability that the 
point belongs to that class. Dropout is used after global 
average pooling, and batch normalization is used after every 
convolution operation of the network during training. 

IV. EXPERIMENTS 

In the following, we firstly evaluate the performance of the 
critical point candidates detection method. Then, we evaluate 
the performance of the proposed SPE-Net (SPE + 
multi-stream CNN), by training and testing it on the 3D 
neuron image stacks from a whole mouse brain and the 
publicly available BigNeuron dataset [34]. Subsequently, an 
ablation study is conducted to illustrate the contributions of 
different modules in the multi-stream CNN and the proposed 
SPE method. Finally, we demonstrate the potential of our 
detected critical points to be good seed points for neuron 
reconstruction, by inputting them to an existing seed based 
neuron reconstruction method. 

A. Datasets and Performance Measures 

Whole Mouse Brain Sub-image (WMBS): This dataset 
contains 34 neuron images selected from a whole mouse brain 
which is provided by the Allen Institute for Brain Science. The 
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size of these images is 1024 1024 100   voxels (resolution: 
0.2 0.2 1.0  μm/voxel). Since the resolution in z dimension 
of these images is 5 times lower than that in x and y 
dimensions, we expand the size of the z-axis from 100 to 500 
(using cubic interpolation) before processing the images to 
balance the voxel aspect ratio. We used 12 images for training 
(WMBS1-12) and 22 images for testing (WMBS13-34). 

BigNeuron Project [34]: This is a publicly available 
dataset for single neuron reconstruction in 3D microscopy 
images, which consists of different species including fruit fly 
and other insects, fish, turtle, chicken, mouse, rat, and humans. 
The sizes of these image stacks are 1018 503 29  , 
1600 1600 37   voxels and so on. We expanded the size of 
the z-axis for the test BigNeuron images, according to the 
voxel size information provided by the BigNeuron project. For 
some images in the BigNeuron project, the voxel size was 
unknown, and we doubled the size of the z-axis of these 
images, reflecting the typically lower resolution in the z 
dimension [16]. We used 30 images from this dataset, 15 for 
training and 15 for testing. 

Performance Measures: In order to evaluate the detection 
results, we manually labeled the critical points of all the 
images used in this work, which we used as the gold standard 
for evaluation. Based on the gold standard, we calculated three 
commonly used measures from the experimental results: false 
positive (FP), false negative (FN) and true positive (TP). 
Specifically, FP represents the number of falsely detected 
critical points, FN is the number of true critical points that are 
not detected, and TP represents the number of true critical 
points detected. Based on those three measurements, we 
calculated Precision P = TP/(TP+FP) and Recall R = 
TP/(TP+FN), as well as the F1-measure, F1 = 2RP/(R+P) [35]. 
Points within   voxels to a ground truth were also regarded 
as true positives. In the experiments,   was chosen according 
to the local neurite diameter of the gold standard, which was 
estimated by the method proposed in [3]. Specifically, we set 

( ) / 2gtd p   , where ( )gtd p  represents the estimated 
local neurite diameter of a ground truth gtp  and   is a 
“tolerance term”. We set 5   in this paper, taking into 
consideration the potential diameter estimation error (1 voxel), 
and the location shifts of the gold standard caused by both the 
minimum distance discrepancy visible to human eye (2 voxels) 
[4] and the subjectivity of different annotators when labeling 
the critical points (2 voxels). 

B. Implementation Details 

Parameters Selection: The number of spherical surfaces 
18N  . The range of radii for the spherical surfaces 
 3, 4,..., 20R  . The number of azimuth angles and polar 

angles are 64, i.e., 64a pM M  , which means that the input 
image size of the 2D multi-stream CNN is 64 64 . We set the 
expansion ratio 6T   and repeating times 3n   for the 
inverted residual blocks [36]. The reduction ratio for the 
squeeze-and-excite module is 4 [37]. All the parameters were 
fixed in the experiments. 

Data Augmentation: We rotated the spheres 5 times before 
extracting the spherical patches at the selected points for 
training. Specifically, all the spheres generated at the same 

point were rotated along the x axis by 90   and along the y 

axis by 90   and 180 . Therefore, 6 training samples can be 
generated from a point. 

Training: The proposed network uses the categorical 
cross-entropy loss function and Adam optimizer [38]. The 

initial learning rate is set to 31e , and reduces by 10 times 
every 4 epochs. All the experiments were carried out on a 
workstation with an Intel Xeon E5-2683 CPU, 32GB RAM, 
and a single Titan Xp GPU. 

 
TABLE I 

THE AVERAGE RECALL OF THE CRITICAL POINT CANDIDATES 

EXTRACTED BY DIFFERENT 3D SEGMENTATION METHODS 

Methods Terminations Branch Points 
Cross-over 

Points 
M1 0.9949 1.0000 1.0000 
M2 0.9909 0.9996 0.9999 
M3 0.9496 0.9999 0.9999 

C. Critical Point Candidates Detection Results 

In this section, we evaluate the performance of the critical 
point candidates detection method, by comparing the 
improved V-Net (M1) with the Res-Incep-Net [42] (M2) and 
Attention U-Net [43] (M3). Similar to the improved V-Net, 
the Res-Incep-Net is also a CNN based 3D neuron image 
segmentation method. And the Attention U-Net integrates 
attention gates into the standard U-Net architecture to select 
the features passed through the skip connections. In the 
experiments, the compared networks were trained using the 
same training samples. And the image segmentation results  
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Fig. 7. Performance comparison for different 3D segmentation methods. (a), (b) and (c) are the terminations, branch points and cross-over points detection 
performances of SPE-Net on the critical point candidates extracted by the compared methods, respectively. 
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produced by the compared methods were skeletonized to 
obtain the critical point candidates set. 

Firstly, we compare the recall of M1-M3 to evaluate the 
proportion of true critical points that are correctly included by 
the candidate points. From Table I, we can see that all the 
methods perform well in extracting branch points and 
cross-over points. But the accuracy of M3 for terminations 
drops substantially. Secondly, we evaluate the critical points 
detection results of our SPE-Net on the critical point 
candidates extracted by M1-M3. From Fig. 7(a), we can 
observe that M1+SPE-Net and M2+SPE-Net yield close 
results for terminations, but the recall and F1-measure of 
M3+SPE-Net drop substantially. This obviously reflects that 
the relatively low recall rate of M3 for termination candidates 
affects the subsequent classification. Further, it can be seen 
from Fig. 7(b) that the three methods show comparable 
F1-measures for branch points, and M1+SPE-Net performs 
slightly better. Similar to branch points, there is no significant 
difference between the three methods for cross-over points, 
and M1+SPE-Net outperforms the other methods. 

To conclude, M1 achieves the overall best performance 
compared with M2 and M3. And there are close performances 
between M1+SPE-Net and M2+SPE-Net. The experimental 
results show that the quality of the critical point candidates 
have an impact to the critical point classification performance 
of SPE-Net. But as long as the critical point candidates 
detection methods can achieve high recall rates, the 
performance of SPE-Net will be stable. This demonstrates the 
robustness of SPE-Net to the critical point candidates. 

D. Quantitative Results on the WMBS Dataset 

In this section, we compare the performance of SPE-Net 
with the multiscale ray-shooting model (MR) [3] and the 
DeepBranch (DB) [7], which are two state-of-the-art methods 
designed for neuron terminations detection and neuron branch 
points detection, respectively. The parameters for MR were set 
and tuned according to the authors’ suggestion in [3]. Since 
DB is also a deep-learning based method, we trained it on the 
same training samples as SPE-Net. In total 4166 training 
samples were selected from the training images, including 346 

terminations, 311 branch points, 154 cross-over points and 
3355 non-critical points. The ratio between critical points and 
non-critical points is imbalanced, because we found that 
CNNs were “sensitive” to critical points. In other words, a 
small number of critical point training samples can lead to 
acceptable recall rates. However, much more non-critical 
point training samples are required to reduce false positive 
rates and achieve higher precision rates. One possible 
explanation for this is that it is easier for the multi-stream 
CNN to learn the obvious patterns of critical points from the 
spherical patches. But the patterns of non-critical points are 
more variable because of the complicated and rich hierarchy 
of the neuronal structures. As MR and DB were designed for 
only 1 type of critical points detection, we compared their 
performances separately. That is, we compared the 
termination detection results of SPE-Net with MR and the 
branch points detection results of SPE-Net with DB. 

Before quantitative evaluation, we firstly illustrate the 3D 
critical points detection results of the compared methods on a 

true positive false positive false negative

(a) (b)

(c) (d)

(e) (f)  
Fig. 8. 3D critical points detection results for a challenging multi-neuron 
image in the WMBS dataset. The contrast of the images is adjusted slightly for 
better visualization of weak signals. (a) Original image. (b) Cross-over points 
detection results by SPE. (c) and (d) Branch points detection results by DB 
and SPE, respectively. (e) and (f) Terminations detection results by MR and 
SPE, respectively. Yellow box: the zoomed-in view. 

challenging neuron image stack for visual inspection (Fig. 8). 
It can be seen that two neurons in the image are close to each 
other, resulting in a high degree of mutual occlusion of the 
neurite fibers (Fig. 8(a)). Therefore, it is a challenging task to 
even label the critical points manually. In addition, the weak 
foreground signals and fuzzy neuronal structures further 
increase the difficulty of critical points detection. In Fig. 8(c) 
and (d), we can see that DB fails to detect most of the branch 
points, whereas SPE-Net only misses a small number of 
branch points. As for the detection results of terminations (Fig. 
8(e) and (f)), MR detects much more false positives than 
SPE-Net. From the zoomed-in view (yellow box) of Fig. 8(f), 
we can see that a false positive point is close to a false negative 
point. This is because SPE-Net detects a termination too far 
away from the true termination. 

Then, we show the quantitative comparison results on the 
22 test images from the WMBS dataset in Fig. 9 with box 
plots3. The detection results of SPE-Net for cross-over points 
are shown without comparison, because we were not aware of 
other methods designed for cross-over points detection in 
neuron image stacks. It can be seen from Fig. 9(a) that our 
SPE-Net yields higher precision, recall and F1-measure than  

3The accuracies of each test images can be found in Supplementary 
Material. 
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Fig. 9. Performance comparison for the WMBS dataset. (a) Terminations detection performance of SPE-Net compared to MR. (b) Branch points detection 
performance of SPE-Net compared to DB. (c) Cross-over points detection performance of SPE-Net. 
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Fig. 10. Performance comparison for the BigNeuron dataset. (a) Terminations detection performance of SPE-Net compared to MR. (b) Branch points detection 
performance of SPE-Net compared to DB. (c) Cross-over points detection performance of SPE-Net. 

TABLE II 
AVERAGE ACCURACIES OF DIFFERENT METHODS FOR TERMINATIONS AND BRANCH POINTS DETECTION ON THE WMBS AND BIGNEURON DATASETS 

Performance 
Measures 

Datasets 
Terminations Branch Points 

Cross-over 
Points 

SPE-Net MR SPE-Net DB SPE-Net 

Precision 
WMBS 0.7190 0.4056 0.6588 0.3808 0.5977 

BigNeuron 0.8706 0.7792 0.8548 0.8066 0.5612 

Recall 
WMBS 0.7593 0.6801 0.8426 0.6052 0.8182 

BigNeuron 0.8681 0.8553 0.9145 0.9439 0.7191 

F1-Measure 
WMBS 0.7386 0.5081 0.7395 0.4675 0.6908 

BigNeuron 0.8693 0.8155 0.8836 0.8699 0.6141 

 
MR, which confirms the effectiveness of the proposed method. 
Note that SPE-Net can detect critical points in the original 
images, whereas MR requires binarized images as input. 
Hence, SPE-Net not only performs better, but also has a wider 
scope of application than MR. It can be seen from Fig. 9(b) 
that SPE-Net significantly outperforms DB in precision, recall 
and F1-measure. The experimental results confirm that 
SPE-Net, which is designed for detecting all 3 types of critical 
points, outperforms the compared state-of-the-art methods 
designed for only 1 type of critical points detection. 

E. Quantitative Results on the BigNeuron Dataset 

After evaluating the performance of SPE-Net on the WMBS 
dataset, we tested it on the images from the BigNeuron dataset 

to further demonstrate the applicability and robustness of the 
proposed method to different data. 15 images were selected for 
training and the 15 images reported in the paper of 
DeepBranch [7] were used as the test images. In Fig. 10, we 
show the quantitative results on the 15 test images. It can be 
seen that SPE-Net still outperforms MR in precision, recall 
and F1-measure. As for branch points detection, SPE-Net 
achieves comparable results to DB–it yields comparable 
precision to DB and outperforms DB in recall and F1-measure. 

In Table II, we summarize the average precisions, recalls 
and F1-measures of the compared methods on both WBMS 
and BigNeuron datasets for a more comprehensive 
comparison. From the termination detection results, we can 
clearly see that SPE-Net constantly yields superior results, 
compared with MR, on both datasets. Also, for branch points  
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TABLE III 
ABLATION STUDY OF THE PROPOSED METHOD 

Models 
Ablation Type 

Point Type F1-Measure Multi- 
Stream 

HS SE SPE TC2.5D MSMV 

Model 1       
Terminations 0.5403 
Branch Points 0.3985 

Cross-over Points 0.4471 

Model 2       
Terminations 0.6189 
Branch Points 0.5674 

Cross-over Points 0.4846 

Model 3       
Terminations 0.7056 
Branch Points 0.7281 

Cross-over Points 0.6398 

Model 4       
Terminations 0.7386 
Branch Points 0.7395 

Cross-over Points 0.6908 

Model 5       
Terminations 0.4181 
Branch Points 0.5369 

Cross-over Points 0.4094 

Model 6       
Terminations 0.5504 
Branch Points 0.7214 

Cross-over Points 0.4601 

 
detection, SPE-Net outperforms DB on both datasets, except 
for the small recall difference on the BigNeuron dataset. The 
comparison results in Table II demonstrate that SPE-Net 
performs better than its competitors on both datasets. Further, 
we can observe that the performances of MR and DB show 
large varieties on different datasets. Specifically, the 
F1-measure of MR on the WMBS dataset is about 31% lower 
than that on the BigNeuron dataset, whereas the figure for 
SPE-Net is only about 13%. Moreover, the F1-measure of DB 
drops more dramatically by over 40%. Nevertheless, the figure 
for SPE-Net is only about 14%, indicating that SPE-Net is 
more robust than MR and DB on the challenging WMBS 
dataset. The experimental results show that SPE-Net obtains 
the overall best performance than the compared methods on 
different datasets and demonstrate its robustness and wide 
applicability. 

F. Ablation Study 

In this section, we conducted an ablation study on the 
WMBS dataset, as shown in Table III, to illustrate 
contributions of different modules in the proposed SPE-Net 
(Model 4). From Model 1 to Model 4, we demonstrate the 
effectiveness of the multi-stream setting, the h-swish (HS) 
non-linearity and the squeeze-and-excite (SE) module. From 
Model 4 to Model 6, the contribution of the proposed SPE is 
confirmed. 

In order to evaluate the contribution of the multi-stream 
setting, we built a single-stream CNN (Model 1) by using a 
single Conv Block A to accept all the patches. We stacked all 
the patches together and fed them to the single-stream CNN. 
Therefore, the input size of the single-stream network is 
64 64 18  , in which the third dimension of the input is 
considered as ‘channel’. By comparing Model 1 and Model 2, 
we can see that the detection accuracies are improved, which 
demonstrates the effectiveness of the multi-stream setting. By 
comparing Model 2 with Model 3, we can see significant 

improvements in Model 3, which demonstrates the 
effectiveness of the HS non-linearity. After adding the SE 
module, Model 4 achieves the highest F1-measures for all 3 
kinds of points. 

After verifying the effectiveness of the modules in the 
multi-stream CNN, we evaluated the contribution of SPE by 
comparing it with other patches extraction methods. The 
compared methods are the multi-scale multi-view (MSMV) 
sampling and the triple-crossing 2.5D (TC2.5D) approach [40]. 
MSMV is the patches extraction method used in DeepBranch 
[7], and TC2.5D is an improved version of the 2.5D patches 
extraction method [41]. In the following, the implemental 
details of the compared methods are introduced before we 
discuss the experimental results. 

By using Maximum Intensity Projection (MIP), MSMV 
generates 3 views (axial, sagittal, coronal) of the voxel of 
interest at 3 different scales (e.g., 20, 30 and 40 voxels), 
respectively. Therefore, in the experiments, in total 9 slices of 
size 4040 were extracted at the voxel of interest. TC2.5D 
also extracts 9 slices of size 4040, including 3D slices from 
3 orthogonal directions and 6 diagonal directions. The patch 
size of the two compared methods was set to 40 to ensure they 
cover the same area as SPE which covers a spherical region of 
diameter 40. In the experiments, the patches extracted by 
MSMV and TC2.5D were fed into our multi-stream CNN. 
Since the patch size of MSMV and TC2.5D (4040) is 
smaller than that of SPE (6464), we changed the strides 
from 2 to 1 for the second inverted residual block of Conv 
Block B in the multi-stream CNN. This ensures that the Output 
Module of the multi-stream CNN receives large enough 
feature maps. The training samples extracted by MSMV and 
TC2.5D were augmented using scaling and rotation, 
generating 18 training samples at a point. 

From Model 4 to Model 6, we can see that SPE outperforms 
its competitors by large margins. This is because SPE is able 
to transform 3D information to 2D without losing 3D 
structural and contextual information, whereas neither TC-  
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Fig. 11. Visual inspection of neuron reconstruction results produced by PNR, 
using different seed points. (a) Neuron reconstruction results of the original 
PNR. (b) Neuron reconstruction results of the critical points based PNR. The 
threshold S for computing SSD is 2. 
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Fig. 12. Neuron reconstruction performance comparison for the test 
BigNeuron images. (a) The SD and SSD (S=2) scores. (b) The average SSD 
scores calculated using different S. 

2.5D nor MSMV can preserve all the 3D information, leading 
to worse performance in neuron critical points detection. 

The ablation study confirms that all the settings of our 
SPE-Net are effective to improve the critical points detection 
accuracies and demonstrates the contribution of SPE. 

G. Neuron Reconstruction Using the Detected Critical Points 

The neuron critical points are helpful to determine the 
topology and faithfulness of the neuron structure 
reconstructions [8]. Many reconstruction algorithms and tools 
can be used to reconstruct the neuron morphology based on the 
critical points, e.g., the Probabilistic Neuron Reconstructor 
(PNR) [16]. Starting from the given seed points, PNR 
recursively traces neuron branches by sequential Monte Carlo 
estimation, using state transition and measurement models 
designed specifically for the purpose of neuron tracing. 
Originally, PNR can automatically detect seed points that have 
a high probability of being centered at neuronal branches. In 
order to show the potential of the neuron critical points to be 
good seed points for neuron reconstruction, we used the 

detected critical points as seed points for PNR to trace the 
neuronal branches in microscopic image stacks. 

The images in the BigNeuron dataset were used in the 
experiments, because manually annotated reconstruction 
results were provided in this dataset for references. In order to 
evaluate the neuron reconstruction performances, we used the 
spatial distance (SD) and substantial spatial distance (SSD) as 
performance measures, which are widely used to evaluate the 
neuron reconstruction results [39]. SD measures the mean 
distance between each pair of closest nodes between two 
neuron reconstructions (i.e., the manual reconstruction and the 
reconstruction result generated by computational methods). 
SSD measures the average distance between pairs of closest 
nodes when they are at least S voxels apart from each other. 
The threshold S was set to 2 by default, following the settings 
in many other studies [20][42]. 

Illustrative examples of the neuron reconstruction results 
produced by the original PNR and critical points based PNR 
are shown in Fig. 11. It can be seen that the critical points 
based PNR is able to trace more complete neuronal structures 
than the original PNR, leading to lower SD and SSD scores. In 
Fig. 12, we show the quantitative comparison of the original 
PNR and the critical points based PNR on the 15 BigNeuron 
test images used in Section IV-E. Of these two methods, the 
critical points based PNR shows a smaller performance spread, 
indicating that our detected critical points are able to increase 
the robustness of PNR. Further, by varying the threshold S 
(Fig. 12(b)), we can observe that the critical points based PNR 
performs better in most of the cases, which confirms the 
effectiveness of our detected critical points to PNR. 

Indeed, only the position information of our detected 
critical points was used in the experiments. In other words, the 
neuron reconstruction performance can be further improved 
by taking more information provided by the critical points into 
consideration. For example, starting from a termination, the 
neuron reconstruction method only needs to trace one path 
back to the neuron soma or other critical points. Therefore, we 
can design a path selection method to prevent the tracing 
method from stepping into the noisy background or the 
neighboring neuronal structures. Specifically, from all the 
path candidates starting from a given termination point, we 
can calculate the confidence scores [20] based on, for example, 
local intensity or orientation information and select one path 
with the highest confidence score. This could be done and may 
be helpful to increase the robustness of the neuron 
reconstruction methods, but requires further exploration. 

V. CONCLUSIONS 

In this paper, we proposed a novel 3D neuron critical points 
detection method for neuron microscopy images. The core 
idea is extracting and projecting 3D intensity distribution 
features to 2D by the proposed spherical-patches extraction 
(SPE) method. A 2D multi-stream CNN is then designed to 
learn the projected intensity distribution features extracted by 
SPE and classify any critical point candidate into one of four 
classes: termination point, branch point, cross-over point, or 
non-critical point. Experimental results confirm that the 
proposed method outperforms other state-of-the-art critical 
points detection methods, and also proved the potential of the 
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detected neuron critical points to be good seed points for 
neuron reconstruction. 

Additionally, we have established a dataset called Whole 
Mouse Brain Sub-image (WMBS), in which all the critical 
points of the images are manually labeled. 

In the future, we will add and label more images to enlarge 
the WMBS dataset. Furthermore, by using this dataset, we are 
planning to develop algorithms for neuron image analysis such 
as automatic neuron reconstruction algorithms based on 
critical points detection and automatic cross-over separation 
algorithms.  
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