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Abstract—Digital reconstruction of neuronal structures from 
3D microscopy images is critical for the quantitative 
investigation of brain circuits and functions. It is a challenging 
task that would greatly benefit from automatic neuron 
reconstruction methods. In this paper, we propose a novel 
method called SPE-DNR that combines spherical-patches 
extraction (SPE) and deep-learning for neuron reconstruction 
(DNR). Based on 2D Convolutional Neural Networks (CNNs) 
and the intensity distribution features extracted by SPE, it 
determines the tracing directions and classifies voxels into 
foreground or background. This way, starting from a set of seed 
points, it automatically traces the neurite centerlines and 
determines when to stop tracing. To avoid errors caused by 
imperfect manual reconstructions, we develop an image 
synthesizing scheme to generate synthetic training images with 
exact reconstructions. This scheme simulates 3D microscopy 
imaging conditions as well as structural defects, such as gaps 
and abrupt radii changes, to improve the visual realism of the 
synthetic images. To demonstrate the applicability and 
generalizability of SPE-DNR, we test it on 67 real 3D neuron 
microscopy images from three datasets. The experimental 
results show that the proposed SPE-DNR method is robust and 
competitive compared with other state-of-the-art neuron 
reconstruction methods. 
 

Index Terms—3D neuron reconstruction, neuron morphology, 
deep learning, microscopy images. 

I. INTRODUCTION 

HE morphology reconstruction of neuronal cells from 
3D microscopy images is essential to understand brain 

functions [1], [10]. Neuronal morphology is crucial in 
determining cell type, function, connectivity, and 
development [11], and thus helps to understand the routing of 
information flow across brain areas [12]. The study of 
morphological changes is important to identify drugs and 
treatments for diseases affecting the central nervous system 
by loss of neurons and their connections [13].  

Quantitative measurement and statistical analysis of 
neuron morphological properties require reliable digital 
morphology reconstruction (tracing) of the neuronal 
structures from microscopy images. However, it is 
challenging to efficiently obtain faithful digital descriptions 
of neuron morphology from 3D microscopy data. As the 
volume of a typical mouse brain image often contains 20 to 
30 or more teravoxels [14], it is infeasible to manually 
delineate all the neuronal structures. Recently, many software 
tools have been developed to increase the efficiency and 
reliability of manual neuron reconstruction, for example, 
TeraVR [15]. However, the speed of manually processing the 
huge amount of microscopy images is still far behind the rate 
at which images are acquired. Consequently, it is essential to 
develop efficient automated computational methods [2], [3], 
[9] and software tools [7] to accurately produce neuron 
morphology reconstructions from 3D microscopy images.  

Early algorithms and tools for digital neuron 
reconstruction employed traditional computational techniques, 
such as graph theory [5], [13], [18], path-pruning [16], [17], 
fast-marching [19]-[21], probability hypothesis [22], [40], 
marked point process [23], virtual finger [6], tubularity flow 
field [24], voxel scooping [25], critical point detection [26], 
[27], rayburst sampling [45], as recently reviewed in more 
detail [28]. Most of these methods are based on hand-crafted 
features, making their performances rely on careful parameter 
tuning or reliable image preprocessing. Recent international 
initiatives such as the DIADEM challenge [29] and the 
BigNeuron project [30] have revealed that the performances 
of existing neuron reconstruction methods are still far from 
perfect, especially on low-quality images. 

In recent years, a variety of deep-learning based methods 
has been proposed for 3D neuron microscopy image analysis 
and neuron reconstruction. Especially Convolutional Neural 
Networks (CNNs) are increasingly used to segment or 
enhance neuronal structures from 3D microscopy images [8], 
[31]-[35], aiming at improving the performances of the 
existing neuron reconstruction methods. DeepNeuron [36], 
for example, is able to detect neurites, connect neuronal 
signals and refine reconstruction results. Other methods [14], 
[37] employ CNNs to detect neuron critical points as seed 
points for the subsequent neuron reconstruction process. To 
our best knowledge, deep-learning based neuron 
reconstruction strategies have barely been explored. In [51], 
deep reinforcement learning is employed for neural tracking 
in 2D neuronal microscopy images, but it is not extended to 
3D. One of the main drawbacks of these methods is that the 
network training relies on either extensive manual annotation 
of foreground voxels or pseudo labels generated based on  
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Fig. 1. Workflow of the proposed method. (a) The proposed neuron reconstruction method. (b) Examples of synthetic training images.  
 

manual reconstructions. Obtaining such training samples is 
extremely time-consuming and labor-intensive [4], due to the 
rich hierarchy of neuronal structures and the low quality and 
ambiguity of the images. Hence, progressive-learning based 
methods [1], [38] have been proposed to iteratively train the 
neuron segmentation networks and update the pseudo labels 
produced by automated neuron reconstruction methods. 
However, the iterative training scheme significantly increases 
the training time. Moreover, the performance of the trained 
model essentially depends on the quality improvement of the 
pseudo labels in each iteration, which in turn depends on the 
performance and robustness of the existing automated neuron 
reconstruction methods. 

Currently, the size of an entire 3D mouse brain imaged at 
sub-micrometer is larger than 200004000010000 voxels. 
While it seems natural to use 3D CNNs for neuron 
reconstruction in 3D microscopy images, the huge volume of 
the 3D neuronal imaging data introduces significant 
challenges to 3D CNNs. Due to the smaller number of 
parameters, 2D CNNs have higher efficiency and lower 
computational costs than 3D CNNs. These advantages not 
only allow faster processing, but also lead to more 
possibilities of 2D CNNs in terms of the functionalities and 
architectures, given the same computational resources. Thus, 
2D CNNs are more preferable than 3D CNNs for neuronal 
image analysis. Moreover, though 3D CNNs are well 
developed right now, the development of 2D architectures, 
whether CNNs or not, is usually more advanced. Many novel 
deep learning techniques appeared for 2D image analysis, for 
example, the recently popular vision transformer (ViT) [50] 
was proposed for 2D image recognition. Therefore, another 
advantage of using 2D CNNs is that we can easily catch up 
with the fast development of 2D architectures to improve 2D 
CNNs based neuronal image analysis methods, whereas 
extending the state-of-the-art 2D architectures to 3D may be 
infeasible due to the limited computational resources. 

In this paper, we propose a spherical-patches extraction 
(SPE) [14] and deep-learning based neuron reconstructor 
(DNR), called SPE-DNR, for neuron reconstruction from 3D 
microscopy images. By employing the SPE method for 
feature extraction and transformation, we build SPE-DNR 
using 2D CNNs consisting of two functional heads (a neurite 

tracer and a classifier). The neurite tracer starts from a set of 
seed points and iteratively determines the tracing directions 
along the neurite centerlines. The classifier estimates the radii 
of the neuronal structures and automatically stops the tracing 
process when it steps into the background region. The overall 
pipeline of the neuron reconstruction procedure in this work 
is shown in Fig. 1(a). Given an input image stack, the neuron 
soma and a set of seed points are first detected. Then, starting 
from the seed points, the SPE-DNR traces the neuronal 
centerlines by iteratively determining the tracing directions 
using 2D CNNs. In this process, a joint decision scheme is 
developed to determine the tracing direction based on the 
confidence scores given by the seed point detector and the 
neuron reconstructor. Finally, the graph representing the 
complete neuron circuit is reconstructed using a breadth-first 
search (BFS) algorithm [40]. Moreover, to avoid introducing 
erroneous training labels caused by imperfect manual 
annotations, we develop an image synthesizing scheme to 
generate synthetic training images with exact reconstructions. 
Both the CNN-based seed point detector and SPE-DNR are 
trained on synthetic images and directly evaluated on the test 
images. Examples of the synthetic training images are shown 
in Fig. 1(b). 

The main contributions of this paper are: 
 We propose a novel 3D neuron reconstruction method 

integrating SPE with 2D CNNs. During tracing, the joint 
decision scheme helps to increase the robustness of 
SPE-DNR. Moreover, the learning-based neurite tracing 
scheme and stop criteria substantially reduce the number 
of parameters to be tuned. This makes our method more 
applicable than other conventional neuron 
reconstruction methods that rely on carefully tuned 
parameters, because repeated parameter tuning is 
impractical when processing large-scale neuron 
microscopy images. 

 To the best of our knowledge this is the first work to 
train a CNN-based neuron reconstructor using synthetic 
images while obtaining robust neuron reconstruction 
results on real test images. The main challenge to train 
the proposed neuron reconstructor is that it requires 
precise centerline annotations. Unfortunately, even 
manual annotations may deviate from the true neuronal 
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centerlines, because of various reasons such as the 
minimum distance discrepancy visible to the human 
eyes [16] and occasional attentional drift of human 
annotators [39]. As a result, imperfect annotations are 
not uncommon even in the gold standards provided by 
publicly available datasets such as the DIADEM 
challenge [29] and the BigNeuron project [30], giving 
erroneous training labels to the proposed method (see 
Section II-E). To solve this problem, we propose to use 
the existing reconstruction annotations to generate 
synthetic training images. In these images, the 
reconstructions precisely match the neuronal centerlines, 
which guarantees the correctness of the training labels. 

 By evaluating the proposed SPE-DNR on 67 real 3D 
neuron images from three datasets, we demonstrate its 
wide applicability and good generalizability. The 
experimental results show that SPE-DNR achieves 
robust results on the three test datasets and is 
competitive to other state-of-the-art neuron 
reconstruction methods. 

The remainder of this paper is organized as follows: 
Section II describes the proposed 3D neuron reconstruction 
method and the image synthesizing scheme. The experiments 
on neuron microscopy images are presented in Section III. 
Finally, we draw our conclusions in Section IV. 

 
II. METHOD 

A. Soma Segmentation 

One of the stop criteria of our method is that it reaches the 
soma region. Therefore, soma segmentation is the first step of 
the proposed neuron reconstruction method. Given an input 
image stack I , a soma segmentation method [41] is 
employed to extract the soma voxels and output a binary 
soma map somaI . This method is based on a surface evolving 

algorithm using a set of morphological operators, which can 
efficiently obtain the soma region. The default parameter 
values of the soma segmentation method are used in this 
work. This step can be skipped if there is no soma region in 
the image. 

B. Seed Point Detection 

After the soma region is extracted, centerline points of the 
neuronal structure in I  are detected to serve as seed points 
for SPE-DNR. Specifically, an improved V-Net [32], 
developed specifically for 3D neuron microscopy image 
segmentation, is employed to directly detect the single-voxel-
wide centerline of the neuronal structures from I . The binary 
label matrices that indicate the centerline of the neuronal 
structures are generated using the reconstruction annotations. 
Then, the improved V-Net learns to output a centerline 
probability map [0,1]C I , in which the value of each voxel 

is its likelihood of being centered on a neuronal structure. 
Finally, from CI , the seed points are selected whose 

probability is larger than 0.5 and is the highest among its 
neighbors. In addition to providing the starting locations for 
the SPE-DNR, the seed points are used in the proposed joint 
decision scheme (see Section II-F). 

N
Mp

Ma

Extract

(a) Spherical Cores (b) Spherical Patches

 
Fig. 2. An illustrative example of the SPE method. (a) N concentric spherical 
cores are generated to extract the intensity distribution features of the 
neuronal structure (only three spherical cores are illustrated, for better view). 
(b) N spherical patches are extracted. 

C. SPE and Deep-Learning Based Neuron Reconstructor 

We propose an SPE and deep-learning based neuron 
reconstructor (SPE-DNR) to iteratively trace the neurite 
centerlines using 2D CNNs, based on the intensity 
distribution features extracted by the SPE method. 

1) Spherical-Patches Extraction (SPE): The SPE method 
[14] can transform the intensity distribution of a 3D region of 
interest into multiple 2D patches. Based on the intensity 
distribution features provided by the 2D patches, we can use 
2D CNNs to trace the neuronal structures in 3D images. Here, 
our slightly modified SPE method is introduced. 
Generating the Spherical Core: Given a point y  at 

location ( , , )x y z , a spherical core is generated as, 

1 2 1 2

1 2 1 2

1 2 2

, ,

, ,

, ,
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 


 

                   (1) 

where 
1 2 1 2 1 2, , , , , ,( , , )i m m i m m i m mx y z  is the coordinate of a point 

1 2, ,i m my  in the spherical core, il  is the radius the spherical 

core, 
1

(0,2 ]m   is the azimuth angle and 

2
[ / 2, / 2]m     is the polar angle. The polar angles are 

set as, 
2 2cos(2 / ( 1) 1) / 2m parc m M     , where pM  is 

the number of polar angles and 2 1,2,..., Pm M , so that the 

points are approximately uniformly distributed in the 
spherical core. The azimuth angles are uniformly distributed, 
i.e., 

1 12 /m am M  , where aM  is the number of azimuth 

angles and 1 1,2,..., am M . 

Extracting the Spherical-Patches: N  concentric spherical 

cores, with radii 1{ }N
i iL l  , are defined at y  to extract the 

intensity distributions. Then, these distributions are projected 
to 2D spherical patches (Fig. 2) as, 

1 21 2 , ,( , ) ( )i i m mm m P I y       (2) 

where 
1 2, ,( )i m mI y  is the voxel intensity at 

1 2, ,i m my  in I and 

1 2( , )i m mP  is the intensity of the 1m th row and 2m th column 

in the spherical patch a pM M

i


P   corresponding to the ith 

spherical core. This way, the rows of iP  are arranged by the 

order of 
1m  and the columns by the order of 

2m . Finally, 

N  spherical patches 1{ }� N
i i P  are extracted from y . 
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Table I. The proposed CNN architecture. The number of input and 
output sizes and operators are listed for each layer. The operators s, 
pad and D represent the size of stride, padding size and dilation 
level, respectively. 

Input Size Output Size Operators 

Backbone 
3232N 151532 conv3x3, s=2, pad=0, D=1 
151532 151532 conv3x3, s=1, pad=1, D=1 
151532 111132 conv3x3, s=1, pad=0, D=2 
151532 3332 conv3x3, s=1, pad=0, D=4 
Neurite Tracer 

3332 1164 conv3x3, s=1, pad=0, D=1 
1164 1164 conv1x1, s=1, pad=0, D=1 
1164 11K conv1x1, s=1, pad=0, D=1 
11K K1 reshape 

Classifier 
3332 1164 conv3x3, s=1, pad=0, D=1 
1164 1164 conv1x1, s=1, pad=0, D=1 
1164 113 conv1x1, s=1, pad=0, D=1 
113 31 reshape 

 
In [14], the spherical patches are separately fed into a 2D 

multi-stream CNN for neuron critical points detection. 
Although the multi-stream setting can improve the 
performance of the CNN, it introduces extra computational 
burden. Thus, to balance the accuracy and computational 
efficiency, in this work we stack all the patches together and 
feed them into a 2D single-stream CNN, considering 
different patches as different ‘channels’. 

2) Deep-Learning Based Neuron Reconstructor (DNR): 
The architecture (Table I) of the proposed DNR is similar to 
those in [42] and [43], but we build it in a 2D manner 
receiving   of size 3232N as input, i.e., 32a pM M   

(see Section III-B for the selection of aM  and pM ). 

Moreover, to reduce the influence of the radius estimation 
task to the direction determination task, we move the radius 
estimation task from the neurite tracer to the classifier, and 
we replace its activation function according to the 
characteristics of our data. 

The backbone of the DNR consists of four convolutional 
layers for feature extraction. The dilated convolution kernels 
[44] are employed in the third and fourth layers to extend the 
receptive fields without introducing extra trainable 
parameters. Batch normalization and rectified linear unit 
(ReLU) activation are used after all the convolutional 
operations, except for the output layers. We use padding size 
0 for the purpose of gradually shrinking the sizes of feature 
maps. This way, the CNN can output the prediction results 
with fewer convolution layers and parameters, allowing faster 
processing. 

The functional head consists of a neurite tracer and a 
classifier, both of which receive the output feature maps from 
the backbone. During tracing, the neurite tracer determines 
the tracing directions, whereas the classifier classifies any 
voxel in a 3D image into ‘foreground’ or ‘background’ class 

and estimates the radii of neuronal structures. Specifically, 
the output of the neurite tracer is a K-dimensional vector 

(1) ( ) ( )[ ,..., ,..., ]n K Tp p pp  activated by the softmax function, 

where ( )np  is the class probability corresponding to the nth 

possible tracing direction ( )nd  distributed on a unit spherical 

core (1) ( ) ( )[ ,..., ,..., ]n K TD d d d  generated using Eq. (1). Each 

point on D  corresponds to one possible tracing direction. By 
quantizing the possible tracing directions in this way, we can 
determine the tracing directions by finding the local maxima 
in p  (detailed in Section II-F). 

The network architecture of the classifier is identical to the 
neurite tracer, except the output layer. The classifier outputs a 
three-dimensional vector consisting of a two-dimensional 

vector (1) (2)[ , ]Tb bb  for voxel classification, activated by 

the softmax function, and a regression node for the estimation 

of radius r, where (1)b  and (2)b  are the class probability of 

‘foreground’ and ‘background’ class, respectively. Thus, the 

class of any voxel in a 3D image can be determined by 
picking the class with the highest probability from b . Since 
the radii of the neuronal structures are not less than 1 voxel in 
the microscopy images used in this work, the regression node 
is activated by ReLU+1 to ensure that its output is greater 
than or equal to 1. 

D. Training Scheme for the SPE-DNR 

1) Training Samples Generation: To train the SPE-DNR, 
three kinds of training samples are generated, i.e., the 
centerline sample, 

 , , , , c

c cY r
y

y p b  , 

the off-centerline sample,  

 , , , , o

o oY r
y

y p b  , 

the background sample,  

 , , b

b bY 
y

y b , 

where cy , oy  and by  are the centerline point, off-centerline 

point and background point in 3D training images, 
respectively.  cy

,  oy
 and  by

 are the spherical patches 

extracted by the SPE at cy , oy  and by , respectively. p , b  

and r  are the references for p , b  and r , respectively. 

During training, the DNR receives   as input, and the losses 

are calculated using p , b  and r . Here, the generation of the 

training samples are introduced. 
Centerline Samples: Given a randomly selected centerline 

point cy  from the reconstruction annotation, its child node is 

picked to generate one of two reference directions (Fig. 3(a1)) 
as, 

( )

( )arg min( ( , ))
n

nang



d D

d Δ d       (3) 

where d  is the reference direction, Δ  is the displacement 

vector from cy  to its child node, ( )( , )nang Δ d  is the angle 

between Δ  and ( )nd . Then, in p , the class probability 

corresponding to d  is set to 0.5. Another reference direction 
is generated and labeled in the same way, using the parent 

node of cy . This way, two elements in p  have probability 

0.5, corresponding to the two reference directions, and the 
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remaining probabilities are set to 0.0. The reference radius r  
is obtained from the reconstruction annotation.  
Off-Centerline Samples: If SPE-DNR is trained using only 
centerline samples, it may suffer from overfitting and fail to 
identify correct directions when it slightly deviates from the 
centerline. To improve the robustness of the neurite tracer, 
off-centerline samples are generated (Fig. 3(a2)). Specifically, 

an off-centerline point oy is randomly sampled around the 

reconstruction annotation. Its reference directions are 

determined by finding the centerline point cy  nearest to it 

and calculating the directions from oy  to the parent and child 

nodes of cy . 

Background Samples: These samples are generated from 
the background regions in the 3D training images and only 
used to train the classifier, so reference directions and radii 

are not required. We set [1,0]Tb  for the centerline and off-

centerline samples and [0,1]Tb  for the background 

samples. 
After the locations of the training samples are determines, 

the SPE method is performed at each location in the training 
images to extract   for training. 

2) Separate Training Strategy: During training,   is fed 
to the DNR and three losses are calculated. Here, the 
calculation of the losses is first introduced, and then the 
separate training strategy is detailed. 

The cross-entropy loss tra  from the direction 

determination task is calculated as, 

1

1
log( )

B
T

tra k k
kB 

   pp       (4) 

where B is the batch size, k is the index of the training 
samples, kp  is the output of the direction determination task 

and kp  is the reference for kp . 

The cross-entropy loss cls  from the voxel classification 

task is calculated as, 

1

1
log( )

B
T

cls k k
kB 

  b b       (5) 

where kb  is the output of the voxel classification task and 

kb  is the reference for kb . 

The squared error regression loss reg  from the radius 

regression task is calculated as, 

 
2

1

1 B

reg k k
k

r r
B 

          (6) 

where kr  is the output of the radius regression task and kr  is 

the reference for kr . Note that the background samples are 

excluded when calculating tra  and reg , because it is 

unnecessary to determine the tracing directions and estimate 
the radii in background regions. 

After calculating the losses, one way to train our SPE-
DNR, mimicking other works [42], [43], would be 
minimizing the losses of all the tasks as, 

1 tra cls reg             (7) 

(a) Correct reference directions

(b1) (b2)(a1) (a2)

(b) Erroneous reference directions

Correct reference directions
Manual reconstruction annotations

(c) Common errors in manual reconstruction annotations

(c1) (c2) (c3) (c4)

Reference centerline point yc

Off-centerline point yo 

The parent and child nodes of yc Erroneous reference directions

 
Fig. 3. Illustrations of training sample generation and common errors in 
manual reconstruction annotations. (a) Reference directions generated on 
reconstruction annotations that precisely match the neuronal centerlines. 
(a1)-(a2) Correct reference directions of a centerline point and an off-
centerline point, respectively. (b) Reference directions made on imperfect 
reconstruction annotations. (b1)-(b2) Erroneous reference directions of a 
centerline point and an off-centerline point, respectively. (c) Examples of 
imperfect manual reconstructions in the BigNeuron project [30]. 

However, we found that the regression task negatively affects 
the two classification tasks if the regression and the 
classification tasks are jointly trained. Apparently, these tasks 
are too different to optimize jointly. Therefore, to improve 
the performance of the classification tasks, especially the 
direction determination task, we use a separate training 
strategy. First, the network is optimized by minimizing the 
losses from the two classification tasks, 

2 tra cls            (8) 

After the network converges, we freeze the parameters of 
all the layers in the network, except the output layer of the 
classifier. Then, the parameters of this layer are optimized by 
minimizing the loss as, 

3 cls reg            (9) 

This way, the side effect of the radius regression task on 
the voxel classification task is limited, because only the 
parameters of output layer of the classifier are fine-tuned. 

E. Synthetic Training Image Generation 

Through the proposed training scheme, the SPE-DNR can 
learn to determine the centerline direction and estimate the 
radius of neuronal structures. However, it requires precise 
reconstruction annotations to generate accurate reference 
directions. Annotation errors may lead to erroneous reference 
directions, as shown in Fig. 3(b). Taking the off-centerline 
point in Fig. 3(b2) as an example. Due to the deviation of the 
reconstruction annotation, the off-centerline point is sampled 
close to but not exactly on the true centerline of the neuronal 
structure. As a result, erroneous reference directions are 
generated, causing the SPE-DNR to deviate from the true 
centerline. The performance of the SPE-DNR is therefore 
affected by such faulty training samples. Unfortunately, it is 
hard to precisely annotate the centerline of neuronal 
structures, and imperfect annotations such as deviation and 
fluctuation are commonly observed in manual reconstruction 
annotations (Fig. 3(c)). 

To solve this problem, we generate synthetic training 
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images whose reconstructions are known exactly. 
Specifically, starting from the reconstruction annotation of a 
single neuron, we use an image synthesizing method, 
SWC2IMG [40], to generate a basic 3D synthetic neuron 
image. This method simulates microscopy imaging at a 
specified background intensity (BG), signal-to-noise ratio 
(SNR) and inter-voxel correlation (COR) level. It produces 
image stacks with neuronal structures exactly matching the 
given input reconstructions in terms of both centerline 
positions and local radii. 

The SWC2IMG method mainly focuses on simulating the 
imaging conditions. However, structural defects such as gaps 
(Fig. 4(a1)-(a2)) and abrupt radii changes (Fig. 4(a3)-(a4)) of 
neuronal structures also commonly appears in neuron 
microscopy images. Therefore, to further improve the visual 
realism of the basic synthetic images, we propose three 
additional operations as follows. 
Operation 1 : We simulate gaps of neuronal structures in 
microscopy images, as shown in Fig. 4(b1)-(b2). First, we 
randomly select a set of points from the reconstruction 
annotation of the basic synthetic image. Then, in the basic 
synthetic image, we weaken the voxel intensities within a 
spherical region, which is centered at each selected point, to 
1/10th of the original. The sizes of the spherical regions are 
equal to the reference radii of the selected points. 
Operation 2 : We simulate abrupt radius changes of 
neuronal structures in microscopy images, as shown in Fig. 
4(b3)-(b4). First, we randomly select 1% of the total points 
from the reconstruction annotation. Then, the radii of a series 
of points near each selected point are set to 1/2 of the original. 
The length of the point series varies from 5 to 20, according 
to the expected size of the synthetic images. 
Operation 3 : We double the radii of all the points in some 
of the reconstruction annotations. This operation increases 
the diversity of radii in the synthetic images. 

Note that Operation 1 is performed on the synthetic images, 
whereas Operations 2 and 3 are performed on the 
reconstruction annotations before generating the synthetic 
images. A real image and a synthetic image are shown in Fig. 
5 for visual inspection. It can be seen that these two images 
have similar appearances. Moreover, from the zoomed-in 
views, it can be observed that the reconstruction annotation 
matches the centerline of the neuronal structure in the 
synthetic image. 

The training samples for the SPE-DNR are generated from 
the synthetic training images. 

F. Iterative Neurite Tracing with a Joint Decision Scheme 

After training the SPE-DNR on the synthetic images, we 
use it to iteratively trace the neuronal structures. Specifically, 
starting from a seed point 0y , two opposing initial tracing 

directions 0d  and 0
d  are determined as, 

0 0( )nd D , 0 0
  d d       (10) 

where, 

0 0
1,2,...,

arg max( ( ))
n K

n n


 p        (11) 

and 0( )nD  is the n0th element of D , 0p  is the output of the 

neurite tracer at location 0y  and 0 ( )np  is the nth element of 

(b1) (b2) (b3) (b3)

(a1) (a2) (a3) (a4)

 
Fig. 4. Illustrative examples the neuronal structure defects. (a1)-(a4) 
Examples of neuronal structures from real neuron microscopy images of the 
BigNeuron project. (b1)-(b4) Examples of neuronal structures from synthetic 
images generated by the proposed method. The red arrows indicate gaps, and 
the blue arrows indicate locations of abrupt radius changes. 

(a) (b)

Deviated
Annotation

Precise
Annotation

 
Fig. 5. Visual inspection of a real image and a synthetic image generated by 
our method. (a) A real neuron microscopy image from the BigNeuron project. 
(b) A synthetic image generated by our method, using the manual 
reconstruction annotation of (a). Yellow boxes: the zoomed-in views with 
the corresponding reconstruction annotation overlaid. 

0p . The radius 0r  is estimated by the classifier (Fig. 6(a)). 

Subsequently, to trace the neurites in the direction 0d , the 

SPE-DNR takes a step of length 0r  towards 0d  and arrives at 

a new location 1y , i.e., 1 0 0 0r y y d . 

To determine the next tracing direction 1d  at 1y , we 

propose a joint decision scheme. Due to low quality and 
ambiguity of the images, the SPE-DNR may determine 1d  

with low probability, implying that it made this decision with 
low confidence, and this decision may not be optimal. If the 
SPE-DNR follows this decision, it may deviate from the 
centerline. Since the seed points are located on the neuronal 
centerlines, they can be used to determine 1d , when the SPE-

DNR makes a decision with low probability. Specifically, we 
use the SPE-DNR and the seed points around 1y  to jointly 

determine 1d  based on the confidence scores 1̂c  and 1c  of 

two tracing direction candidates 1d̂  and 1d . 

First, as shown in Fig. 6(b), 1d̂  is determined by the SPE-

DNR as,  

1 1
ˆ ( )nd D , 1 1 1

ˆ ( )p n p        (12) 

where, 

1 1
1,2,...,

arg max( ( ))
n K

n n


 p , s.t. ( )n QD     (13) 

and 1p  is the output of the neurite tracer at location 1y , 1p̂  is 

the probability of 1d̂  and 0{ | ( , ,) 0 }6Q ang  q d q q D . 

This way, 1d̂  has the highest probability among the possible 

directions with an angle ≤60° to 0d , which prevents the 
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r0

(a)

r1

(b)
λr1

Local region Θ 

(c)

0
d

0d

0y 0y 1y
0y 1y

1d
1d̂

 
Fig. 6. Illustration of the tracing direction determination process. (a) At a 

seed point 0y , two opposing initial tracing directions 0d  (purple arrow) and 

0
d  (yellow arrow) are determined by the SPE-DNR. (b) The SPE-DNR 

steps to 1y  and determines one direction candidate 1d̂  (red arrow). (c) 

Another direction candidate 1d  (green arrow) is determined by finding the 

vector with the smallest angle to 0d  among the displacement vectors in   

that are generated by the seed points in a local region   with size 1r . The 

green point is the seed point corresponding to 1d . 

SPE-DNR from moving backward. Since the maximum of 

1p̂  is 0.5 (see Section II-D), we set 1 1
ˆ ˆ2c p  to make it 

comparable to 1c , whose maximum is 1.0. 

Second, another tracing direction candidate 1d  is 

determined by the seed points within a local region   with 

size 1r  centered at 1y  (Fig. 6(c)), where   is a scale factor. 

Specifically, we calculate the set of displacement vectors   

from 1y  to all the seed points within the region  . Then, 1d  

is determined as, 

1 0arg min( ( , ))ang



v

d d v


      (14) 

We set the confidence score 1 ( )Cc  I y , where y  is the seed 

point corresponding to 1d , CI  is the centerline probability 

map and ( )CI y  is the centerline probability of y . 

Finally, the next tracing direction 1d  and the next 

centerline location 2y  are determined as, 

1 1 2 1 1 0 1

1 1 2 1 1 1

ˆ, ( , ) 60

ˆ ˆ,

if c c ang

r otherwise

     


  

d d y y d d

d d y y d
(15) 

By iteratively determining the tracing direction and moving 
to the next location, the SPE-DNR can trace the neurites until 
one of the stopping criteria is fulfilled. To prevent the SPE-
DNR from tracing the areas that have been explored by 
previous iterations, a local region around each explored 
location jy  with size 2 jr  is marked by its index j. The 

tracing process is terminated if one of the following stop 
criteria is met: 

1. The classifier classifies the current location as 
‘background’. 

2. The SPE-DNR reaches a region that has already been 
explored. Then, a connection is built between the current 
point and the point corresponding to this explored region. 

3. The SPE-DNR reaches the soma region. 
4. The iteration limit IL is reached. 
The iterative neurite tracing process is completed after all 

the seed points have been explored. After this process, the 
final step is reconstructing a graph representing the complete 
neuronal structure. The graph reconstruction framework 
proposed in [40] is employed for this purpose. Starting from 
a soma node (produced by stop criterion 3), all the traced 

nodes are iteratively traversed using a breadth-first search 
(BFS) algorithm to build the final graph, in which the nodes 
are unidirectionally linked.  

III. EXPERIMENTS 

We evaluated the performance of the proposed SPE-PNR 
by directly testing it on real 3D neuron images from three 
datasets and comparing it with five state-of-the-art neuron 
reconstruction algorithms, i.e., FMST [21], MOST [45], 
APP2 [17], TReMAP [6] and Rivulet2 (R2) [20]. FMST 
generates reconstruction results based on the minimum-
spanning-tree and the fast-marching methods. MOST 
reconstructs the neuronal structures based on the ray-burst 
sampling algorithm [46]. APP2 produces an initial over-
reconstruction based on shortest paths and then prunes 
redundant segments to obtain a final reconstruction. 
TReMAP uses a reverse-mapping technique to trace the 
neuronal structures in 2D projection planes. Finally, R2 
iteratively traces the neuronal structures from the geodesic 
furthest points on the foreground to the soma center. 

A. Datasets and Performance Measures 

BigNeuron Project [30]: This is a publicly available 
dataset for single neuron reconstruction in 3D microscopy 
images, which contains images of various species such as 
mouse, human and fish. Consequently, the image stacks have 
various sizes such as 2048 2048 54  , 511 511 445   and 
640 640 44   voxels. We expanded the size of the z-axis for 
the test images, according to the voxel size information 
provided by the dataset. 34 test images were used from this 
dataset, including 4 fly light, 19 mouse, 7 fruit fly, and 4 
human images1. 

Whole Mouse Brain Sub-Image (WMBS) [14]: This 
dataset contains 34 neuron images extracted from a whole 
mouse brain provided by the Allen Institute for Brain Science. 
The size of these images is 1024 1024 100   voxels, and the 
spatial resolution is 0.2 0.2 1 m  /voxel. To balance the 
voxel aspect ratio and reduce computational costs, the images 
were resized to 512 512 250   during testing. 17 images 
with corresponding manual reconstructions as gold standards 
were used for testing. The remaining images in this dataset 
were not used, because the manual reconstructions of these 
images were incomplete. 

Neocortical Layer-1 Axons (NCL1A) [29]: This publicly 
available dataset contains 16 image stacks from the DIADEM 
challenge. The sizes of these image stacks vary from 
512 512 32   to 512 512 85   voxels. Different from the 
images in the WMBS and BigNeuron datasets, there are no 
clear somas in these images, and the neuronal structures are 
network-like distributed. All the images in this dataset were 
used for testing. 

Performance Measures: To evaluate the neuron 
reconstruction results, we calculated the node distance [47] 
and the overlap measures. The node distance measures were 
the spatial distance (SD), the substantial spatial distance 
(SSD) and the percentage of substantial nodes (SSD%). SD 

 
1 See Supplementary Material Section 1 for the original names of the 

images from BigNeuron dataset. 
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(a) Test Image (b) Manual (c) FMST

(e) APP2

(d) MOST

(g) R2(f) TReMAP (h) SPE-DNR  
Fig. 7. Visual examples of the reconstruction results on a typical test image from the BigNeuron dataset. The image intensity is inverted and the image contrast is 
adjusted for better visualization. The reconstructions are visualized using Vaa3D [49]. (a) Minimum intensity projection of the test image. (b) Manual 
reconstruction. (c)-(h) Reconstruction results of the compared methods.  
 

 
Fig. 8. Performance comparison for the BigNeuron dataset.  

measures the average distance between each pair of closest 
nodes between two neuron reconstructions (i.e., the gold 
standard reconstruction and the automatic reconstruction), 
SSD measures the average distance between pairs of closest 
nodes that are at least two voxels away, and SSD% is the 
percentage of SSD nodes. The overlap measures were 
Precision, Recall and the F1-measure [48], computed in the 
same way as in [20]. 

B. Implementation Details 

Hyper-Parameter Selection: The number of spherical 
surfaces 9N  , and the range of radii for these surfaces 

 2,3,...,10L  . The number of azimuth angles and polar 

angles is 32a pM M  , which means that the input image 

size of SPE-DNR is 32 32 9  , where the third dimension is 
considered as ‘channel’. The number of possible tracing 
directions 1024K   and the iteration limit 100IL  . The 
range for the scale factor   is [1,4]2. The parameters of the 
comparison methods, FMST, MOST, APP2, TReMAP and 
R2, were optimized using grid search for optimal 

 
2 See Supplementary Material Section 2 for the details of hyper-parameter 

selection. 

performance in the experiments. 
Image Synthesizing: The training set contains 48 

synthetic images that were generated by specifying the three 
parameters (BG, SNR, COR) of the SWC2IMG method and 
conducting different operations introduced in Section II-E. In 
total 9 reconstruction annotations were used to generate these 
images, 7 from the BigNeuron dataset (3 fly light, 3 mouse 
and 1 fruit fly species) and 2 from the WMBS dataset. The 
original images corresponding to these annotations were not 
used in the test set. In this work, we set BG {0,1,5,10} , 

SNR {5,10,20,100} , COR {0.0,0.5,0.7,1.0,2.0} , as the 

intensity distribution and noise level of the synthetic images 
generated using these values are close to the test images. The 
proposed Operation 1, i.e., the gaps simulation, was 
conducted to all the synthetic images, and the other two 
operations were conducted to a part of the images3. 

Training: To train SPE-DNR, in total 145,427 training 
samples were generated, including 31,627 centerline samples, 
94,600 off-centerline samples and 19,200 background 
samples. The network parameters were optimized using the 
Adam algorithm. The initial learning rate was 35e , and 
reduced by a factor 10 every 1500 iterations. The batch size 
B=512. All the experiments were carried out on a workstation 
with a single Titan Xp GPU, an Intel Xeon E5-2683 CPU and 
32GB RAM4. 

C. Experiments on BigNeuron Images 

Prior to quantitative evaluation, we first show the 3D 
neuron reconstruction results of the compared methods on a 
typical BigNeuron image for visual inspection (Fig. 7). It is a 
human neuron image with weak-signal, fuzzy neuronal 
structures and relatively dense background noise. It can be  

 
3  See Supplementary Material Section 3 for detailed parameters and 

operations for the synthetic training images. 
4  The source code of the proposed SPE-DNR is publicly available at 

https://github.com/chwx08/SPE-DNR. 
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(a) Test Image (b) Manual (c) FMST

(e) APP2

(d) MOST

(g) R2(f) TReMAP (h) SPE-DNR  
Fig. 9. Visual examples of the reconstruction results on a typical WMBS image. The image intensity is inverted and the image contrast is adjusted for better 
visualization. The reconstructions are visualized using Vaa3D. (a) Minimum intensity projection of the test image. (b) Manual reconstruction. (c)-(h) 
Reconstruction results of the compared methods. Green ellipses indicate the challenging weak-signal and thin neurites. 
 

 
Fig. 10. Performance comparison for the WMBS dataset. 

 
seen that our proposed SPE-DNR and R2 successfully 
reconstruct most of the neuronal structures, whereas the other 
methods either generate redundant structures in the noisy 
background or fail to trace the weak-signal neuronal structures.  

Further, we quantitatively compared all the methods on the 
34 test images in this dataset, as shown in Fig. 8. It can be 
seen that the performance of our proposed SPE-DNR is 
competitive to R2 and outperforms the other methods in all 
the metrics. Although R2 shows outperforming results in 
SSD%, the other metrics of SPE-DNR are better than that of 
R2, showing smaller performance spreads. Moreover, due to 
the various species of the test images, the compared methods 
show large performance spreads, whereas both SPE-DNR 
and R2 show smaller performance spreads than the other 
methods. Even though SPE-DNR is trained on synthetic 
images, it obtains superior performances on real images. The 
experimental results demonstrate the robustness and 
generalizability of SPE-DNR to different neuron species. 

Finally, we trained the SPE-DNR using real training 
images and tested it on the BigNeuron images. By comparing 
it with the SPE-DNR trained on the synthetic images and the 
other comparison methods, we demonstrate the effectiveness 
of the synthetic training images (see Supplementary Material 
Section 4). 

D. Experiments on Whole Mouse Brain Sub-Images 

The 3D neuron reconstruction results of the compared 
methods on a typical WMBS image are shown in Fig. 10 for 
visual inspection. This image contains many weak-signal 
neuronal structures that are hard to be observed by human 
eyes even after contrast adjustment (Fig. 9(a)), challenging 
the robustness of the compared methods. It can be seen that 
SPE-DNR and R2 yield more reasonable results than other 
methods, and SPE-DNR identifies more weak-signal 
neuronal structures than R2, but fragmented reconstructions 
can be observed in our results. The fragmented results are 
mainly caused by the weak-signal and thin neurites. Indeed, 
correctly identifying these ambiguous neuronal structures is 
challenging, because their intensities are close to background 
noises and their radii are too small to be recognized by either 
automatic neuron reconstruction methods or even human 
eyes. As a result, all the compared methods fail to identify 
the challenging weak-signal and thin neurites as indicated by 
the green ellipses in Fig. 9, whereas our method successfully 
identifies these neurites, though fragmented. 

The quantitative performances of all the compared 
methods on the 17 test images in this dataset are shown in Fig. 
10. Similar to the results in the BigNeuron dataset, SPE-DNR 
and R2 show competitive performances in this dataset. 
Moreover, they outperform other competitors by a large 
margin in SD and SSD scores, and SPE-DNR obtains the best 
SD and SSD scores. Since the images in this dataset are from 
the same species, the performance spreads of all the methods 
are smaller than that of the BigNeuron dataset. However, due 
to the influences of the weak-signal neuronal structures, the 
Recalls of all the methods decrease, and SPE-DNR only 
shows a slight drop in Recall though it is still relatively high. 
The experimental results demonstrate that SPE-DNR can 
generalize well on this dataset. 
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(a) Test Image (b) Manual (c) FMST (d) MOST

(e) APP2 (f) TReMAP (g) R2 (h) SPE-DNR  
Fig. 11. Visual examples of the reconstruction results on a typical NCL1A image. The image intensity is inverted and the image contrast is adjusted for better 
visualization. The reconstructions are visualized using Vaa3D. (a) Minimum intensity projection of the test image. (b) Manual reconstruction. (c)-(h) 
Reconstruction results of the compared methods. Yellow boxes are the zoomed-in views an ambiguous structure and green arrows indicate the ambiguous 
structure. 
 

 
Fig. 12. Performance comparison for the NCL1A dataset. 

E. Experiments on Neocortical Layer-1 Axons Images 

Different from the former two datasets, the images in this 
dataset mainly contain network-like neuron axons from 
various neuronal cells and have no clear somas. The 3D 
neuron reconstruction results of the compared methods on a 
typical NCL1A image are shown in Fig. 11. It can be 
observed that the performance of SPE-DNR is still robust. 
Moreover, we can see that some ambiguous structures are 
reconstructed by our method in the background region, 
because these structures show tubularity patterns in a local 
region. For example, in Fig. 11(a), it is hard to tell whether 
the structure indicated by the green arrow is background 
noise or weak-signal neuronal structure. Our method 
recognizes this ambiguous structure as neuronal structure, 
whereas there is no reconstruction reference for it. Artifacts 
are therefore generated. The negative impact of the artifacts 
on practical application scenarios is that researchers may 
spend some time removing the artifacts in the background 
region. This can be achieved easily by a few mouse clicks 
using software tools such as Vaa3D [49], because the 
artifacts in background regions are usually isolated. Indeed, 
the sensitivity of our method to ambiguous structures helps 
the researchers to identify the weak-signal and thin neuronal 

structures that are hard to find even by human eyes. This 
makes our method have higher practical value than the 
compared neuron reconstruction methods, because 
identifying the weak-signal and thin neuronal structures is a 
time-consuming task to the researchers and a challenging task 
to the existing automatic neuron reconstruction methods. 

The quantitative comparison results on the 16 images in 
this dataset is shown in Fig. 12. In general, all the compared 
methods show competitive results in this dataset. Note that in 
the former two datasets, the performances of SPE-DNR and 
R2 are close and outperform the other methods. In this 
dataset, however, SPE-DNR outperforms R2 in terms of 
Precision, Recall, F1-measure and SSD score, and it is 
competitive to R2 in other metrics. This is because R2 
requires a soma region as a source point for neuron 
reconstruction. Since the images in this dataset have no clear 
somas, R2 alternatively considers the neuronal structure with 
the largest radius as the source point, and then it traces a path 
between the source point and each geodesic furthest point. In 
this process, reconstruction errors may be generated because 
R2 may step into the background region to build a path 
between the source point and the neurite of another neuronal 
cell. Therefore, the performance of R2 is not as competitive 
as in the former two datasets. 

Among all the methods, only SPE-DNR consistently 
achieved satisfactory performances in all the metrics on this 
dataset, which further demonstrates its the robustness and 
generalizability. 

F. Experiments on the Computational Efficiency of SPE-DNR 

To evaluate the computational efficiency of the proposed 
method, we calculated the average running time and the other 
evaluation metrics of the compared methods on the 34 
BigNeuron test images (Table II). It can be seen that the 
average running time of our method is acceptable: seed 
points extraction took 18.00 seconds and neurite tracing took  
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Table II. THE AVERAGE VALUES FOR THE EVALUATION METRICS OF THE COMPARED METHODS ON THE BIGNEURON DATASET 
 FMST MOST APP2 TreMap R2 SPE-DNR 

Running Time (s) 317.41 13.04 8.02 39.51 626.59 83.80 

SD 22.36 17.00 25.58 31.16 5.79 3.52 

SSD 33.80 31.58 36.46 44.13 13.75 7.49 

SSD% 0.51 0.55 0.50 0.51 0.29 0.29 

Precision 0.64 0.81 0.68 0.59 0.85 0.88 

Recall 0.77 0.66 0.68 0.64 0.88 0.89 

F1 0.67 0.72 0.51 0.59 0.86 0.88 

 
65.80 seconds on average. Even though R2 obtains 
comparable results to our method, its computational 
efficiency is much lower. Moreover, although MOST, APP2 
and TreMap show superior computational efficiencies, our 
method yields much better neuron reconstruction results than 
these methods. To conclude, our method outperforms its 
competitors because of its robust and competitive 
reconstruction performances and acceptable computational 
cost. 

CONCLUSIONS 

In this work, we presented a spherical-patches extraction 
(SPE) and deep-learning based neuron reconstructor (DNR), 
called SPE-DNR, for automatic 3D neuron reconstruction. 
By employing the SPE method for feature extraction and 
transformation, we built SPE-DNR using 2D CNNs, 
consisting of two functional heads (a neurite tracer and a 
classifier). The neurite tracer can iteratively determine the 
tracing directions and thus trace the neurite centerlines 
starting from a set of seed points. The classifier can estimate 
the radii of the neuronal structures and automatically stop the 
tracing process when it steps into the background region. 
During training, to avoid introducing possible erroneous 
labels caused by imperfect manual reconstruction annotations, 
we develop an image synthesizing scheme to generate 
synthetic training images with precise reconstruction 
annotations. This scheme simulates not only the imaging 
conditions of 3D microscopy images, but also potential 
structural defects such as gaps and abrupt radii changes, to 
improve the visual realism of the synthetic images.  

The experimental results on 67 real 3D neuron microscopy 
images from three datasets show that the proposed SPE-DNR 
achieves robust and competitive results compared to other 
state-of-the-art neuron reconstruction methods (FMST, 
MOST, APP2, TreMap and Rivulet2), and has wide 
applicability and good generalizability. The reasons why our 
method is superior to other methods is that it is sensitive to 
weak-signal neuronal structures. As shown in Fig. 9, all the 
compared methods fail to identify the challenging weak-
signal neurites, whereas our method successfully identifies 
these neurites. Moreover, the synthetic images provide a 
sufficient number of reliable training samples. The fully 
trained SPE-DNR can accurately determine the tracing 
direction. Thus, the reconstruction results of our method are 
closer to the neuronal centerlines than other compared 
methods. 

To our best knowledge, this is the first work demonstrating 

that neuron reconstruction methods can be trained purely on 
synthetic data and yet achieve state-of-the-art performance on 
real data, which opens up new avenues for developing more 
sophisticated but data-demanding deep-learning based 
methods in the field. The limitation of our method is that the 
reconstruction results of our method may contain fragmented 
structures. These results are mainly caused by the weak-
signal and thin neurites. Since the SPE-DNR traces the 
neurites based on the information of a local region, it lacks 
enough global information to distinguish these challenging 
and ambiguous neurites from background noises. Thus, the 
SPE-DNR may stop at the ambiguous foreground locations, 
leading to fragmented structures in the results. Connecting 
the fragments to form a complete neuron structure is a 
challenging task. Consequently, improving the completeness 
of the reconstruction results will be one of our main goals in 
the future. 
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