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BigNeuron: a resource to benchmark and 
predict performance of algorithms for 
automated tracing of neurons in light 
microscopy datasets

BigNeuron is an open community bench-testing platform with the goal of 
setting open standards for accurate and fast automatic neuron tracing. 
We gathered a diverse set of image volumes across several species that is 
representative of the data obtained in many neuroscience laboratories 
interested in neuron tracing. Here, we report generated gold standard 
manual annotations for a subset of the available imaging datasets and 
quantified tracing quality for 35 automatic tracing algorithms. The goal 
of generating such a hand-curated diverse dataset is to advance the 
development of tracing algorithms and enable generalizable benchmarking. 
Together with image quality features, we pooled the data in an interactive 
web application that enables users and developers to perform principal 
component analysis, t-distributed stochastic neighbor embedding, 
correlation and clustering, visualization of imaging and tracing data, 
and benchmarking of automatic tracing algorithms in user-defined data 
subsets. The image quality metrics explain most of the variance in the 
data, followed by neuromorphological features related to neuron size. We 
observed that diverse algorithms can provide complementary information 
to obtain accurate results and developed a method to iteratively combine 
methods and generate consensus reconstructions. The consensus trees 
obtained provide estimates of the neuron structure ground truth that 
typically outperform single algorithms in noisy datasets. However, specific 
algorithms may outperform the consensus tree strategy in specific imaging 
conditions. Finally, to aid users in predicting the most accurate automatic 
tracing results without manual annotations for comparison, we used 
support vector machine regression to predict reconstruction quality given 
an image volume and a set of automatic tracings.

Quantification of neuron morphology is an essential process in defining 
neuron type, assessing neuronal changes in development and aging, 
determining effects of brain disorders and treatments, and provid-
ing important parameters for neuronal computations. However, 

quantifying the three-dimensional structure of neuronal trees has 
remained a challenge1,2, even though researchers have been developing
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methods for fully automated neuron reconstruction for nearly four 
decades3,4. While automatic reconstruction of neuron tree structures 

Received: 10 May 2022

Accepted: 14 March 2023

Published online: xx xx xxxx

 Check for updates

Q1

 e-mail: meijering@imagescience.org; ascoli@gmu.edu; h@braintell.org

A list of authors and their affiliations appears at the end of the paper

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-023-01848-5
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-023-01848-5&domain=pdf
mailto:meijering@imagescience.org
mailto:ascoli@gmu.edu
mailto:h@braintell.org


Nature Methods

Resource https://doi.org/10.1038/s41592-023-01848-5

Types projects (http://celltypes.brain-map.org/), Taiwan FlyCircuit 
(15,921 image volumes; http://www.flycircuit.tw/ ref. 13) and Janelia 
FlyLight (13,449 image volumes; https://www.janelia.org/project-team/
flylight), but several datasets are also contributed directly by neu-
roscientists worldwide. In total, we gathered approximately 30,000 
single-neuron 3D image volumes and used them for bench-testing of 
automated tracing algorithms, and generated 1.4 million tracing results. 
To generate a representative dataset of various organisms, cell types 
and imaging conditions, we randomly selected a small subset from the 
datasets of the large-scale projects. Practically, it was not feasible to 
provide gold standard annotations for all 30,000 volumes. Thus, we 
selected 166 neurons for the generation of a diverse set of manually 
curated gold standard reconstructions in annotation workshops and 
for posterior benchmarking of automatic tracing algorithms, named 
as the Gold166 dataset (Supplementary Table 1). The resulting dataset 
exceeds previous benchmarking studies in both number and diversity.

We aimed to bench-test automated single-neuron tracing algo-
rithms on a common open platform: Vaa3D (RRID:SCR_002609). We 
held a total of 11 community hackathons and events in the first phase. 
As a result, 16 automatic tracing algorithms were developed (Supple-
mentary Table 2). In the bench-testing phase, all ported algorithms were 
tested on the Gold166 dataset using TITAN at Oak Ridge National Labo-
ratory (United States), as well as supercomputers at Lawrence Berkeley 
National Laboratory (United States) and Human Brain Project (Europe).

This community effort (Fig. 1) yielded several notable outcomes:

•	 In a series of hackathons worldwide, developers learned (from 
each other) the relative pros and cons of various methods and 
how to leverage existing resources to refine or develop tracing 
algorithms.

•	 The project has served as a practical guideline for neurobiologists 
in determining the suitability of specific tracing methods for a 
variety of image datasets and providing feedback regarding the 
utility of various sample preparation and imaging protocols.

•	 Bringing neuron tracing methods and results together encouraged 
method developers to collaborate, share and reuse each other’s 
software modules.

•	 We developed a community-derived phenotype databases for 
single neurons, cataloging neuron shape and projection patterns 
from different species and different brain regions, and offering 
an opportunity to mine and query the patterns of neurons with 
distinct shapes.

•	 We provide end-users with a tool to predict the accuracy of auto-
mated tracing algorithms using as input only the image quality 
features, and a set of automated tracing results, without the need 
for manually annotated data.

A web app to navigate heterogeneous bench-testing results
To enable user-defined interactive exploration of the data, we organized 
gold standard annotations, automatic reconstructions, their imaging 
datasets and associated metadata in R data frames. Both gold standard 
annotations and automated reconstructions were stored and analyzed 
using the Stockley–Wheal–Cole (SWC)31 format. For bench-testing, we 
measured the distance between all of the automatic reconstructions 
and the respective gold standard annotations, and computed image 
quality metrics for each dataset. We pooled all of the data in an interac-
tive web app, Shiny (https://linusmg.shinyapps.io/BigNeuron_Gold166 
and https://neuroxiv.net/bigneuron/, Extended Data Fig. 1; the two links 
are mirrors of the same application) and the documentation can be 
found at https://github.com/lmanubens/BigNeuron. The app enables 
users to perform principal component analysis, t-distributed stochastic 
neighbor embedding (t-SNE), correlation and clustering, visualization 
of imaging data and reconstruction in 2D projections, and benchmark-
ing of automatic tracing algorithms in user-defined data subsets.

based on three-dimensional (3D) microscopy imaging datasets was 
expected to be a feasible task for computers, experience during the 
last decades has underlined the difficulty of this challenge. Diversity in 
animal species, developmental stages, brain location and image qual-
ity of microscopy datasets implies that algorithms with an impressive 
performance in small sets of images do not generalize well when applied 
to image volumes obtained under different conditions.













































Advances in labeling5–7, tissue preparation8,9 and imaging tech-
niques10–12 enable both individual laboratories and large-scale brain 
science projects13–17 to generate increasingly large fluorescence micros-
copy datasets for the reconstruction of single neurons. Several auto-
matic tracing algorithms have been developed18–23, and individual 
groups have tackled the challenge of applying automatic neuron trac-
ing by mainly focusing on their own datasets24,25. Improving labeling 
and imaging quality is key for simplifying the task of automatic recon-
struction26, but bottlenecks remain given that manual correction and 
fine-tuning by experts are still needed. A faithful annotation of neuron 
morphology is relevant for estimating potential connectivity between 
brain regions. This is especially important when whole brain modeling 
techniques rely on synthetic generation of neuron populations based 
on annotation data27. Artifacts in the tracing process can result in 
altered tree topology, leading to unreliable simulation of signal inte-
gration and transmission when modeling neuronal networks. Under-
standing the performance of available algorithms and how they match 
with specific characteristics of different imaging datasets is crucial for 
achieving fully automatic neuron tracing28.

Two common problems in the use of tracing algorithms are that 
imaging quality varies between labeling and imaging techniques, 
and that the growing list of available algorithms complicates the test-
ing of their suitability for specific tasks in a systematic and fast man-
ner. Similarly, algorithm developers lack a standard set of images for 
benchmarking. The DIADEM challenge (https://diadem.janelia.org/
history.html29) is an example of successful standardized benchmarking. 
However, the diversity of datasets tested is limited when studying the 
relevance of image quality features, and since that challenge several 
algorithms have been developed28.

We devised the BigNeuron project to address these challenges 
and advance toward a consensus on how to use and improve automatic 
neuron tracing tools30. The results presented here summarize the goals 
reached through its completion, including the gathering and sharing 
of a community-contributed, diverse and extensive set of 3D neuron 
imaging datasets, the provision of gold standard annotations for a 
selected subset of images to be used as reference for bench-testing, 
the organization of collaborative events for the development of auto-
matic tracing algorithms, the provision of a platform for benchmarking 
algorithms against gold standard reconstructions, the integration of 
the obtained knowledge to improve the accessibility, accuracy and 
efficiency of automatic reconstruction methods, and last, the provision 
of a tool to suggest the most suitable automatic tracing algorithm in 
external datasets based on our results.

Results
An open bench-testing platform for neuron tracing
The BigNeuron project utilizes neuron image stacks from different spe-
cies (including fruitfly and other insects, fish, turtle, chicken, mouse, 
rat and human) and nervous system regions such as cortical and sub-
cortical areas, the retina and peripheral nervous system. The data 
include multiple light microscopy modalities, especially laser scanning 
microscopy (confocal or 2-photon) and brightfield or epi-fluorescent 
imaging. The neurons are labeled using different methods, such as 
genetic labeling and virus, dye or biocytin injection, and span a broad 
range of types (for example, unipolar, multipolar, release of different 
neurotransmitters, and with a wide variety of electrophysiological 
properties). Many of these image volumes were generated by large-scale 
neuroinformatics projects such as the Allen Mouse and Human Cell 
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To encourage developers to develop algorithms and to simplify 
the benchmarking of algorithms developed in the future, we added the 
possibility of uploading and interactively bench-testing reconstruction 
results of user-defined algorithms. Developers can test their algorithms 
with the gold standard preprocessed imaging datasets, which can be 
downloaded from https://github.com/BigNeuron/Data/releases/tag/
Gold166_v1. After generating single-cell reconstructions for any subset 
of the data, users can upload the obtained automatic reconstructions 
by specifying the dataset identity (ID) of each reconstruction in the 
filename (see the ID lookup table https://github.com/lmanubens/
BigNeuron/blob/main/lookup_gold166.csv). Once uploaded, users can 
include the tracings in the interactive analysis and benchmarking. We 
invite developers and users to send algorithm implementations and 
imaging datasets for inclusion in the platform. All submissions will be 
assessed once per year and introduced in the platform. Those should 
conform to the guidelines described in the Open Data Agreement 
(Supplementary Information) of the BigNeuron project.

Variance in the Gold166 dataset
An overview of the morphological features (Supplementary Table 3) 
of the analyzed trees shows that there is high morphological diversity 
in the analyzed neurons. To quantify the heterogeneity 




of the data, 

we computed the coefficient of variation for a set of morphological 
features shared by the Gold166 dataset and a published neuron tracing 
data mining work32 based on data from NeuroMorpho.org33. For seven 
out of nine of the neuromorphological features, the coefficient of vari-
ation of the Gold166 dataset was similar to or higher than that of the 
NeuroMorpho.org dataset (Fig. 2a), indicating that the diversity of the 
Gold166 dataset is sufficient to sample the performance of automatic 
tracing algorithms in heterogeneous neuron types.

To identify the features that account for variance in the datasets, 
we performed dimensionality reduction using principal component 
analysis (PCA). The first two principal components explain 43.3% of the 
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variance in the data (Fig. 2b). Measures that account for image quality 
mainly contribute to principal component 1 (PC1, 24.8% explained 
variance): that is, the focus score computed on the SWC nodes, the 
percentage of minimal intensity voxels in the SWC nodes, and the 
standard deviation of the intensity in the image volume (Fig. 2c). Fol-
lowing those metrics, the median intensity in the image volume and the 
median intensity on the SWC nodes make considerable contributions 
to PC1. Neuromorphological metrics mainly contribute to PC2 (18.5% 
explained variance): that is, the total length, followed by the maximum 
path distance, the maximum branch order, and the number of tips of 
the trees (Fig. 2d). The focus score and contrast-to-noise ratio in SWC 
nodes contribute to PC2 to a lower extent.

A 2D projection overview of those principal components shows 
that the datasets are clustered by the laboratories that provided them. 
Nevertheless, neurons from the same organism obtained by different 
laboratories tend to cluster together (Fig. 2b).

Even though a systematic comparison between species should be 
done for similar cell types, we nevertheless present here a comparison 
of broad neuromorphological differences to provide context informa-
tion for the analyzed neuronal tracings. It is worth noting that neuron 
types of different organisms have not been matched, and that we did 
not choose the sample size based on this aim. Consequently, we do 
not claim either significant or non-significant differences between 
neurons from different species. That being said, human and silkmoth 
neurons are big and complex, and have branches that extend more than 
200 μm from the soma (Fig. 2e). In the case of silkmoth neurons, this is 
explained by the fact that the reconstructions include long-range pro-
jections (Fig. 2e,f). Mouse neurons are similar to human cells: although 
they are smaller and less complex, they have a comparable ratio of 
branch points per unit of cable length (Fig. 2g) and cluster together 
with ex vivo human neurons in the PCA (Fig. 2b). By contrast, fruitfly, 
silkmoth, zebrafish and chicken neurons have ratios of branch points 
per unit of cable length higher than mammalian counterparts (Fig. 2g). 

BigNeuron resource

Diverse light microscopy datasets

Community e�ort

Diverse organisms

Laser-scanning
Bright-field
Epifluorescence

Algorithm porting/development

Supercomputer-based bench-testing

Web app interactive analysis

Data hosting
- Access to a diverse neuron image tracing dataset

- New datasets can be added progressively

- Manually curated annotations for a 
   subset of the gathered data

- Consensus algorithm merging base tracers
- Unified set of automated tracing algorithms

- Novel algorithms can be added progressively

- Big data resource for comparison of 
   algorithm performance

- Interactive analysis of the generated results:

      results matching imaging conditions
(1) Identification of datasets and tracing

(2) Prediction of best-performing algorithms
(3) Benchmarking of novel algorithms 

Gold standard annotation workshops

End-user interaction
Neuroscientists 

Algorithm developers

Fig. 1 | Overview of the BigNeuron project and how the community can 
interact with it. BigNeuron has gathered tens of thousands
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 of 3D neuronal 

images from a diverse set of experimental preparations. Through the effort of 
the open-source community, and using powerful supercomputers, we unified 
a broad range of tracing algorithms in a common platform and bench-tested 
them on a manually annotated subset of the gathered data. We developed an 
interactive web app that enables any user to find similarities between their 

data and the BigNeuron dataset; it provides a method for obtaining consensus 
reconstructions and a tool for neuroscientists to predict the best automatic 
tracing algorithm in any single-neuron imaging 
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dataset. This resource not 

only provides access to and interactive analysis of the obtained datasets and 
results, but it also aims to incorporate datasets and algorithms provided by the 
community in the future.
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Frog neurons have branch point density values closer to human ex vivo 
and mouse counterparts. As shown in the PCA (Fig. 2b), fruitfly neu-
rons differ from silkmoth neurons mainly in terms of maximum path 
distance and maximum branch order, while having increased average 
diameter and bifurcation angles compared with zebrafish and chicken 
neurons, while the silkmoth 


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neurons have values closer to human, 

mouse and chicken neurons. Chicken neurons have high dendritic 
complexity at small radii (Fig. 2e), but they are closer to zebrafish and 
fruitfly larvae neurons in regard to the size and density of branches per 
unit of dendritic length (Fig. 2f,g).

To explore putative functional heterogeneity in the dataset, we 
quantified the centripetal bias (k, ref. 34). When the centripetal bias is 
0, neurites are not preferentially radial to the soma, and their angles 
toward the root of the tree are distributed uniformly. As the centripetal 
bias k goes to infinity, all branch segments increasingly have radial 
directions from the soma. The distribution of branch angles to the 
tree root as a function of k can be expressed analytically as a modi-
fied von Mises distribution35. The Sholl intersection profile (SIP) of 
specific neuron types can be predicted by their span, total length and 
centripetal bias, each of which has a specific impact on neuron func-
tionality34. Furthermore, the impact of centripetal bias on electrotonic 
compartmentalization has been demonstrated34. Our analysis shows 
that the centripetal bias of the Gold166 neurons is constrained to val-
ues lower than 2 (Fig. 2h), indicating that the analyzed neurons have 
low electrotonic compartmentalization and long conduction times 
compared with hippocampal neurons (with k ~ 7 and k ~ 12 for cornu 
ammonis (CA1) and dentate 
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gyrus, respectively). All planar cells have 

a length-to-SIP scale ratio consistent with the theoretical 2D von Mises 
root angle distribution. The 3D silkmoth and fruitfly neurons have a 
higher dendritic occupancy, consistent with the theoretical 3D von 
Mises root angle distribution. In terms of cross-species comparison, 
we observed similar distributions in the centripetal bias of all species.

We performed unsupervised hierarchical clustering using both 
neuromorphological and image quality features. We found that our 
data contains 16 clusters and is best approximated by an EEE (ellipsoi-
dal, equal volume, shape and orientation) model (Extended Data Fig. 2, 
maximum Bayesian information criterion36 of 2989.32). The data are 
clustered by both dataset and organism.

Consensus provides best estimates of neuronal structure
Given the high diversity of existing automatic tracing algorithms, it is 
reasonable to assume that their performance in reconstructing specific 
tree morphology features may vary. We tested their accuracy by meas-
uring the error between the morphological features in the automatic 
reconstructions and the gold standard trees. We found that each mor-
phological feature was best estimated by different algorithms (Fig. 3a; 
Kruskal–Wallis; average contraction, H(5) = 83.17, P = 1.8 × 10−16; average 
fragmentation, H(5) = 143.93, P = 2.6 × 10−29; bifurcation angle remote, 
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H(5) = 34.12, P = 2.3 × 10−6; maximum branch order, H(5) = 60.99, 
P = 7.6 × 10−12; maximum path distance, H(5) = 10.80, P = 0.056; num-
ber of tips, H(5) = 68.21, P = 2.4 × 10−13; overall x span, H(5) = 29.46, 
P = 1.9 × 10−5; total length, H(5) = 30.22, P = 1.3 × 10−5). Thus, a set of 
diverse algorithms can contribute complementary information to 
approximate the ground truth with increased precision. To build on 
this idea, we developed an algorithm for generating consensus trees 
based on a set of automatic reconstructions. By clustering the closest 
node positions of the set of reconstructions in space, the algorithm 
defines a set of consensus nodes (Fig. 3b). We assigned a confidence 
value 




to each consensus node using a voting strategy that depends on 

their existence in iterations of each individual automatic reconstruc-
tion. Thus, nodes highly prevalent in many reconstructions are kept in 
the consensus tree, while false-positive fragments in small numbers 
of reconstructions have low confidence and are discarded. Finally, 
the high-confidence set of consensus nodes obtained through this 
process is connected in a single tree using the maximum spanning 
tree algorithm (Fig. 3b,c). It is worth noting that one of the algorithms 
used for bench-testing is based on a similar idea. The ensemble neu-
ron tracer37 generates distinct models of neuron tracings based on a 
single base tracer at a time (for example, APP221). In that case, what is 
perturbed is the data used for tracing, and the output tracings are then 
merged into an as complete as possible single result. The perturbations 
include thresholding, dilation and closing of foreground image pixels. 
In ensemble neuron tracer the final result is obtained by merging the 
diverse results into an as complete as possible single tree: there is no 
consensus node voting strategy nor are diverse base tracers combined. 
By contrast, the consensus algorithm combines the tracing results 
(SWC files) of diverse base tracer algorithms based on an iterative 
voting strategy to select and connect consensus nodes, without any 
perturbation of the input images. Based on the bench-testing of all 
algorithms, we ranked the best-performing algorithms. Consensus 
(best in 40 of the Gold166 images), SmartTracing (20), neuTube (19) 
and axis analyzer (15) are the algorithms that perform best in most 
images in the dataset (Extended Data Fig. 3a). We also obtained an 
overall benchmark using an aggregated distance metric (Extended 
Data Fig. 3b), which also showed that Consensus was the most accu-
rate overall, followed by nctuTW_GD and neuTube. The bench-testing 
results also showed that, in 5 of 16 clusters identified in the data (Fig. 2i), 
the consensus tree algorithm provided the most accurate approxi-
mation to gold standard trees (Fig. 3c,d). However, in the other clus-
ters, different algorithms outperformed the consensus tree strategy 
(Fig. 3e). This suggests that the consensus approach introduced here 
usually outperforms others when the datasets are noisy. However, 
when imaging conditions are not as challenging, neuTube may be 
optimal for intermediate contrast-to-noise ratios, and SmartTracing 
and Axis Analyzer seem to perform best in high contrast-to-noise ratio 
images (Extended Data Fig. 4).
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Fig. 2 | Variance in the datasets is explained by both image quality and tree 
morphology features. a, Bar plot showing the coefficient of variation (c.v.) 
of various morphological features in the Gold166 dataset and in a dataset 
with 5,099 neurons from NeuroMorpho.org32. b, PCA of gold standard neuron 
reconstructions and their image stack quality metrics. Each point is one gold 
standard annotation, and the color indicates the dataset it comes from. Arrows 
represent the direction of each variable in the PCA space. Longer arrows belong 
to variables that are well represented by the two principal components. 68% 
confidence normal data ellipses for each group are drawn with solid lines. 
CNR, contrast-to-noise ratio; CU, XXX; GMU, XXX; HC, XXX; KIT, XXX; RGC, 
retinal ganglion cell; UT, XXX; UW, 




XXX. c,d, Bar plots showing the percentage 

of explained variance for PC1 (c) and PC2 (d). The red dashed lines indicate the 
expected average contribution. e, Sholl analysis of the neurons in the Gold166 
dataset. Each line expresses the average number of intersections quantified at a 
given distance from the soma for the neurons of a given model organism (color-
coded). f,g, Box plots and dot plots show the bounding box volume (number 

of neurons for each organism: fruitfly, n = 91; chicken, n = 8; zebrafish, n = 13; 
silkmoth, n = 7; frog, n = 2; human cultured, n = 9; mouse, n = 29; human=3) (f) 
and density of branch points per unit of neurite length (g) of the reconstructed 
cells for each model organism (color-coded). The center line is the median value, 
the ends of the box are Q1 and Q3, and the whiskers add 1.5-fold the interquartile 
range. Colored dot points are overlaid for all measures. h, Proportionality 
constant between the total length and the Sholl intersection profile (SIP) as 
a function of the centripetal bias k for planar 2D neurons (dashed black line) 
and 3D neurons (solid black line). Values for each of the cells in the Gold166 
dataset are shown as solid dots color-coded by model organisms. Planar trees 
are shown as circles and 3D trees as triangles. i, Hierarchical clustering using 
both neuromorphological and image quality features. Colors indicate different 
clusters obtained with a Gaussian mixture ellipsoidal, equal volume, shape, and 
orientation (EEE) model. Labels indicate the neuron dataset ID and the organism 
they belong to.
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Predicting best algorithm performance
Image quality metrics correlate with the accuracy of automated trac-
ing (Extended Data Fig. 5), suggesting that specific tree morphology 

features, together with image quality metrics, can be informative in 
the choice of the most accurate algorithm. We used a support vec-
tor machine that, given an image volume and a set of automatic 
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reconstructions, predicts the accuracy of each tested algorithm based 
on a regression of the percentage of difference between the automatic 
reconstructions and gold standards (Fig. 4). By training on 85% of our 
data, we obtained a regression that enables prediction of the percent-
age of difference between the automatic reconstructions and gold 
standards (coefficient of determination of 0.637; Fig. 4a). Learning 
curves with an increasing percentage of data used for training (evalu-
ation on a hold-out set of images only) show that the regression quality 
increases by the percentage of the training set with slight improvement 
once more than 30% of the data is used for training (Fig. 4b), suggesting 
that this strategy will generalize well when it is used in unknown neuron 
reconstruction datasets. We assessed the quality




 of the predictions by 

comparing the percentage of difference for all of the automatic recon-
structions, the true best algorithms and the predicted best algorithms 
for each dataset. We found that both the known best algorithms and the 
predictions in most of the cases performed better than the algorithms 
chosen by chance (Fig. 4c,e; the percentage of difference distribution is 
positively skewed, medians of 27%, 35% and 54% for true best, predicted, 
and all algorithms, respectively; Wilcoxon test, all algorithms versus 
true best, V = 7,319, P = 1.8 × 10−6, n1 = 489, n2 = 18; all algorithms versus 
predicted best, V = 6,389, P = 0.0011, n1 = 489, n2 = 18; predicted best 
versus predicted worst, P = 309, P = 3.2 × 10−6, n1 = 18, n2 = 18; true best 
versus predicted best, V = 111.5, P = 0.11). Similarly, algorithms predicted 
to be worse had a negatively skewed distribution in the percentage 
of difference to gold standards (Fig. 4c; median of 99%). This analy-
sis highlights that for a few neuron datasets, none of the automatic 
reconstruction algorithms was able to recapitulate the gold standard 
annotations. This was the case, for example, for chicken cells, which 
had a particularly low signal-to-noise ratio in their neurites and have 
specific distinctive morphological aspects (such as an increased soma 
size, high branch density and high centripetal bias).

Showcase of best algorithm prediction in fMOST data
Community efforts such as the BRAIN Initiative Cell Census Network 
(BICCN38, https://biccn.org/) are using fluorescence micro-optical 
sectioning tomography (fMOST) to map neuron architecture in whole 
mouse brains. To illustrate the value of BigNeuron in this community, 
we used the support vector machine regression model trained with 
the Gold166 dataset to predict best-performing algorithms in fMOST 
image volumes. The support vector machine model provided predicted 
values for the percentage of difference to gold standard trees (not 
available for those images). The algorithms predicted to provide the 
best results were neuTube and Consensus (Fig. 5a,e). Visual inspection 
of the reconstructions 




suggests that the regression model provides a 

reasonable approximation of the best automatic algorithm selection 
(Fig. 5b–d,f–h). A comparison of image quality features between the 
Gold166 and fMOST images showed that the most similar dataset to 
fMOST was 




the zebrafish larvae retinal ganglion cell dataset (Extended 

Data Fig. 6). The benchmarking of automatic reconstruction algorithms 
in the images of this set is consistent with the predictions. NeuTube 
and Consensus algorithms are among the best approximations to 
gold standard reconstructions. Although these results suggest that 
the support vector machine-based predictor is a useful tool to select 

Q22

Q24

Q25

best-performing algorithms, they also highlight that the predicted 
values may underestimate algorithm accuracy.

Discussion
How to accurately and efficiently perform quantification of neuronal 
morphology across diverse types of neuronal images in an unbiased 
fashion has been a long-standing challenge, which has become even 
more acute with the introduction of exciting technologies that gener-
ate 3D, complete neuronal morphology datasets at high speed8,11,39,40. 
Moreover, large-scale brain science projects such as the BRAIN Initia-
tive in the United Stastes41, Europe’s Human Brain Project42 and the 
Allen Cell Types Database (http://celltypes.brain-map.org/) integrate 
reliable automatic reconstruction into their production pipelines to 
enable fast quantification of the structure of hundreds of thousands of 
neurons. The BigNeuron project has contributed to improving existing 
automatic tracing standards, focusing on the interaction and discussion 
between neuroscientists and developers, and integrating data genera-
tion and development efforts from several laboratories. BigNeuron 
takes an innovative approach by including events for discussion and 
identification of major issues, and coordinated hackathons for the 
development of tools to overcome them.

The project has inspired technical approaches to measure and 
compare the similarity of neuronal trees43,44. The experience has high-
lighted major challenges in the field of neuron annotation and clas-
sification45,46, and contributed to justify methods for imaging47,48 and 
large-scale annotation of neurons24,25,49. BigNeuron enables developers 
to interactively benchmark their tools against the methods assessed 
in this work, and to introduce datasets and algorithms in the bench-
marking set upon request. This collaborative standardized approach 
is notable because the problem of choosing a method to perform 
automatic reconstruction in project-specific datasets is an arduous 
task. The resource could also be adapted to use alternative tree edit 
distance definitions50,51. In our web app we also enable users to bench-
mark algorithms with an aggregated metric. However, we note that 
aggregated metrics should be interpreted with care, given that the 
ranking positions of teams participating in challenges change when 
the aggregation method is changed52. We also note that we focused on 
the challenge of tracing single neurons. However, this approach does 
not preclude the use of the presented tools in images with multiple 
neurons53.

The diversity in the data



 that we analyzed enabled us to gain rel-

evant insights into the future steps needed to improve automatic 
reconstruction tools. Based on our results, image quality should be 
taken into account in the process of choosing the most suitable tool for 
a specific dataset. Another source of variance could be the disagree-
ment between annotations obtained by different persons. Exploring 
this problem was beyond the scope of this work. However, a study 
motivated by BigNeuron explored the variability of human annota-
tors, showing that the differences are small54. Taking into account this 
complementary result, we consider that the solution to this problem is 
to improve the observability of complicated 3D neuron arborizations 
with the best possible multi-dimensional annotation tools to minimize 
the variation of human annotation.

Q28

Fig. 3 | Consensus provides best estimates of neuronal structure. a, Errors for a 
set of morphological metrics in a random subset of automatic tracing algorithms. 
The error was computed as the difference between the metrics obtained in the 
gold standard and the automatic reconstructions. Errors for the automatic 
reconstructions obtained from all image volumes with a given algorithm are 
shown as box plots. The center line is the median value, the box is bounded by 
Q1 and Q3, the whiskers add 1.5-fold the interquartile range, and outliers are 
indicated with points. P values were obtained using the Kruskal–Wallis (one-
sided) test. Number of reconstructions for each method: Advantra, n = 109; app1, 
n = 98; app2, n = 102; nctuTW, n = 54; neuTube, n = 112; smartTracing, n = 86. 
b, Overview of the development of an algorithm to generate consensus trees. 

The algorithm first performs iterative match and center: for each node in each 
tree, it identifies the nearest corresponding location among input neurons, 
and shifts to the mean location. Nodes from all of the input neurons are merged 
to form consensus nodes, and reliability weights for the consensus nodes are 
established by collecting votes for the connections from individual input neuron 
trees. A maximum spanning tree (MST) algorithm is used to connect consensus 
nodes to form the consensus tree. c, An example of the results obtained with the 
consensus tree algorithm using a set of 12 automatic reconstructions. d,e, Bi-
directional entire 




structure average distance between automatic reconstructions 

and the gold standard (GS) of the dataset cluster number 9 (Fig. 2i) (d) 



and cluster 

number 8 (Fig. 2i) (e). The mean ± s.e. is shown as a bar plot.

Q20
Q21
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The information obtained through the pooling of datasets and 
the benchmarking of reconstruction tools can be used to generate 
knowledge-based improved algorithms. Previous work has used the 

BigNeuron datasets to benchmark tracing algorithms55–58 and to define 
neuromorphological features for the analysis of dendritic trees44. How-
ever, to our knowledge there is only one study that explores the idea of 
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Fig. 4 | Support vector machine regression for predicting best algorithm 
performance. a, Support vector machine regression of the percentage of difference 
between automatic reconstructions and the gold standard. Each point 




represents 

the true or predicted percentage of difference for an automatic reconstruction. 
Colored points show subsets of results for individual image volumes. The rest of 
the data in the testing set are represented in gray. The gray line shows the function 
y = x, and the blue line shows a linear model fit of the data, with the 95% confidence 
level for predictions in light gray. b, Learning curves showing the quality of the 
regression as a function of the percentage of data used for training. Each point is 
the average of 5 repetitions using different random subsets of the data for training. 
c, Percentage of difference between automatic reconstructions and gold standard 
(GS) annotations represented as an overlay of box and violin plots. The center line 

is the median value, the box is bounded by Q1 and Q3, and the whiskers add 1.5-fold 
the interquartile range. Colored dot points are overlaid for all measures. Statistical 
comparisons between groups were performed using the Wilcoxon test (two-sided). 
The number of reconstructions in each group are: All algorithms, n = 489; True 
best, n = 18; Predicted best, n = 18; Predicted worst, n = 18. d, Pair plot showing the 
percentage of difference between automatic reconstructions and gold standard 
annotations for the true best algorithms and the predicted best algorithms. Colors 
indicate different neuron datasets in the testing set. e, Representative images of the 
gold standard annotation, the true best automatic reconstruction algorithm, and 
various predictions using the regression results. Red lines represent neuron tree 
branches, blue dots indicate the root of the trees, red dots indicate branch points, 
and green dots indicate terminal points. Scale bar, 100 µm.
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using an ensemble learning algorithm to generate improved automatic 
reconstruction results37, and this learning algorithm has been included 
in our 




analysis. Our results with the consensus tree algorithm highlight 

the potential of such an approach, and provide best estimates of the 
ground truth neuron structure in most of the datasets we analyzed.

While the ensemble neuron tracer and our consensus tree algo-
rithms implicitly rely on the identification and discarding of unrealistic 
features in automatically generated trees, our datasets and web app 
enable interactive exploration of the relationship between reconstruc-
tion quality and the features of the analyzed trees. Our results indicate 
that image features (for example, focus score) are the main correlates 
of reconstruction quality, and we have also identified correlations 
with neuromorphological features such as the parent–daughter ratio. 
Those observations can inform future algorithm development by add-
ing morphological constraints to the generated trees. Even though we 
have generated data for a few variations in parameter sets for some of 
the methods, in this work we have focused on comparison between 
the base methods. We think that future efforts could focus on the 
iterative search of optimal parameter sets by applying optimization 
algorithms with the maximization of reconstruction quality as the 
objective function.

In most cases our regression method to estimate best algorithm 
performance provides accurate estimates of the automatic reconstruc-
tion quality. However, there is a small number of datasets for which 
there is a substantial difference between the true and the predicted best 
algorithms. Thus, this tool should be used with caution. Interestingly, 
in a few cases, none of the automatic reconstruction methods was able 
to produce any result close to the ground truth (>50% of different struc-
ture). This happened in datasets with extremely low signal-to-noise 
ratios and overall bad imaging quality. Quantitative analysis of those 
features can help users to identify objective thresholds for image qual-
ity features below which datasets should be discarded. Recent projects 
are generating unprecedented volumes of gold standard reconstruc-
tions (for example, ref. 25). We expect that application of the methods 
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presented in standardized, larger gold standard datasets will provide 
a valuable tool toward full automation of neuron tracing in specific 
combinations of microscopic imaging and labeling techniques that 
are becoming standards in the field.

We believe BigNeuron is a valuable resource, given that the gold 
standard manual annotations can be used (and have already been 
used in a number of works55–58) for standardized benchmarking. We 
also provide here an example of how the generated bench-testing data 
can be used to learn how diverse algorithms can be the best 




performer 

in specific case scenarios. Researchers can also explore these data 
interactively with our web app, and identify which Gold166 images 
are most similar to theirs, enabling them to select the corresponding 
most effective algorithms. The set of automatic tracing algorithms 
unified in Vaa3D also enables neuroscientists to test them easily, while 
both the consensus tree algorithm and the support vector machine 
predictor can be introduced into their pipelines to leverage the results 
of a bench-testing phase when facing the challenge of tracing their 
datasets.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-023-01848-5.
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a, Predicted




 percentage of different structure for automatic reconstructions 

of fMOST dendrite image blocks. b, Maximum intensity projection of a 
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(c) and NeuroStalker (d) algorithm automatic reconstructions in the image 

volume in b, predicted to provide the best and the lowest accuracy results, 
respectively. e, Predicted percentage of different structure for automatic 
reconstructions of fMOST axon image blocks. f, Maximum intensity projection 
of a representative fMOST axon image block. g,h, 2D projections of the neuTube 
(g) and Advantra (h) algorithm automatic reconstructions in the image volume 
represented in f


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, predicted to provide the best and the lowest accuracy results, 

respectively. Scale bars, 100 µm.
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Methods
Dataset gathering
Fourteen neuroscience research laboratories and institutions world-
wide acquired the imaging datasets used in this work, combining dif-
ferent imaging methods, model organisms and neuron types6,13,25,59–73. 
Supplementary Table 1 lists the metadata describing the relevant 
aspects of each dataset.

Quantification and statistical analysis
Image quality measurement. To quantify image quality, we imple-
mented a plugin in Vaa3D (RRID:SCR_002609, v3.497, http://vaa3d.org) 
that computes the features described in detail in ref. 74. A brief descrip-
tion of the features measured with the plugin is given in the Supplemen-
tary Information. The Vaa3D plugin used is available at https://github.
com/Vaa3D/vaa3d_tools/tree/master/hackathon/linus/image_quality. 
To obtain image quality measurements associated with each individual 
reconstruction, we also computed these features in the 3D data only 
in the image voxels belonging to SWC nodes of the trees. Specifically, 
we extended the image_quality plugin, enabling us to specify an SWC 
file associated with an image volume and compute the image quality 
metrics using only the intensity information of those voxels. Thus, the 
plugin computes image quality metrics in two modes: the first mode 
accounts for all voxels in the image (including background, blobs 
and non-traced neurites), and the second mode accounts only for the 
intensity information along the traces. We used both sets of image 
quality metrics to perform the analysis. Supplementary Table 3 lists 
the definitions of the image quality features used in the analysis.

Image preprocessing. Due to varying properties of image acquisition 
pipelines between institutions, it is challenging to define a universal 
data preprocessing protocol for reconstruction. We performed Brain-
bow color separation, 8-bit data type conversion and color inversion 
for brightfield images as the preprocessing tasks prior to automatic 
reconstruction algorithm bench-testing, using Vaa3D and its plugins. A 
brief description of the preprocessing steps is given in the Supplemen-
tary Information. Supplementary Fig. 1 shows examples of the effect 
of each preprocessing step on the imaging datasets.

Generation of gold standard reconstructions. A total of 14 laborato-
ries contributed 17 datasets spanning a broad diversity of species, brain 
regions, neuron types, labeling methods, microscopy techniques and 
imaging resolution (Supplementary Table 1). Gold standard annota-
tions were produced in the BigNeuron Neuron Annotation Workshop at 
Allen Institute, Seattle, 15–17 June 2015. Each reconstruction entry was 
manually validated by at least six annotators working collaboratively. 
Notably, due to limited image quality, some reconstructions can be 
ambiguous. Annotators were asked to make their best judgment in 
such cases and vote to maximize the agreement between them. Thus, 
we are confident that the final reconstructions reflect the best possible 
reconstruction generated by human experts from the respective image 
given the limited image quality, time and resources; we thus adopted 
this dataset as the gold standard for the automated reconstruction 
algorithms. After manual curation and postprocessing, we obtained 
a gold standard set of 166 reconstructed neurons.

Development of automatic reconstruction algorithms. We ported 
44 implementations of 32 methods for automatic tracing as BigNeuron 
plugins to Vaa3D (Supplementary Table 218–21,37,56,58,75–91), including 16 
already existing tracing algorithms and 16 unpublished algorithms 
specifically developed within the scope of this project (for these lat-
ter ones, we provide a brief description in the Supplementary Infor-
mation). Of the 44 implementations, 7 used a two-step process of 
inclusion of filamentary processes78 to improve the results of several 
algorithms, and were not included to ensure a fair comparison between 
all base algorithms. Two variants were found to be too slow or did not 

generate results (PSF and LCMboost_2). We therefore considered only 
the remaining 35 base implementations (called ‘algorithms’ hereaf-
ter) for bench-testing on the BigNeuron image data (Supplementary 
Table 2). The consensus tree algorithm introduced in this article was 
used to combine the results of all of the algorithms. It is worth noting 
that development and porting of the tested algorithms was performed 
without access to the gold standard data.

Algorithm bench-testing. To bench-test the algorithms, we ran all 
algorithms on the image stacks of gold standard reconstructions 
after preprocessing. Given that the testing of 35 algorithms in the 
Gold166 release image volumes (163 unique 3D stacks) implied running 
5,705 automatic reconstruction processes, those were parallelized in 
high-performance computing facilities. With a maximum time per 
process of 1 h, this implies 5,705 hours of computing time. In terms of 
memory the biggest image volume in the Gold166 set was 8 GB, and the 
algorithms often need more than 16 GB of RAM (random-access mem-
ory) to run. Additionally, we performed comprehensive bench-testing 
on the 30,000 single-neuron 3D image volumes that were gathered 
throughout the project, implying more than 10 million CPU (central 
processing unit) hours to generate more than 1.4 million tracing results. 
The processing was distributed using the TITAN supercomputer at Oak 
Ridge National Laboratory (United States), as well as supercomputers 
at Lawrence Berkeley National Laboratory (United States) and Human 
Brain Project (Europe) to ensure that the technical platform of BigNeu-
ron could reproduce the results over different machines. Processes 
that took longer than 1 h of computing time were terminated and did 
not provide results for the algorithm–dataset pair being tested. As a 
result, 5,571 automatic reconstructions were generated (https://github.
com/BigNeuron/Data/releases/tag/gold166_bt_v1.0). An example of a 
bench-testing script for calling the tested algorithms can be found at 
https://github.com/Vaa3D/vaa3d_tools/blob/d8e434c93708ab2a5b-
d349a79d9093d11aecf9d1/bigneuron_ported/bench_testing/ornl/
script_MPI/gen_bench_job_text_scripts_short.sh.

Reconstruction quality benchmarking. To measure differences 
between automatic and gold standard neuron reconstructions, we 
used the neuron_distance plugin in Vaa3D. This plugin quantifies the 
distance between neurons, defined as the average distance between 
two neurons in all nearest point 




pairs. Given that the number of nodes 

can differ between pairs of reconstructions, distances are obtained 
twice using each reconstruction as a starting set for the search of near-
est points in the other. Finally, the average bi-directional distance is 
calculated. Together with the average distance, the plugin also provides 
the percentage of nodes with pairwise distances greater than 2 voxels 
for each of the compared reconstructions86. To assess reconstruc-
tion quality, we plotted the bi-directional average distance between 
pairs of neurons for each reconstruction method. Other approaches 
include the DIADEM metric, which quantifies the similarity between 
two reconstructions of the same neuron by matching the locations of 
bifurcations and terminations as well as their topology between the 
two reconstructed arbors29, or tree distances based on persistence 
homology44,50. Our approach to calculating tree distances is a simple 
and fast approximation, given that solving this problem is beyond the 
scope of this study. Still, the reported tree edit distances are robust 
with node density variations (Supplementary Fig. 2). Supplementary 
Table in summarizes




 the definitions of the tree edit distances used in the 

analysis. We additionally combined the distance metrics we measured 
in a single normalized aggregated metric by taking the logarithm base 
10 of Euclidean distances, normalizing all metrics between 0 and 1, and 
obtaining the mean. Note that aggregated metric benchmark results 
may change depending on the definition of the aggregated metric52.

Morphological analysis of neuron reconstructions. To consistently 
compare morphological features that are dependent on the size of the 

Q31

Q32
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trees, we first scaled both gold standard and automatic reconstructions 
using the pixel size information of each dataset (available at https://
github.com/lmanubens/BigNeuron/blob/main/scaling_gold.csv). 
Subsequently, to ensure consistent distance measurements in the 3D 
space and generation of consensus trees, we resampled the reconstruc-
tion nodes so that all of the reconstruction segments had a length of 
2 µm. To avoid disconnected subtrees and inconsistent hierarchies, we 
sorted the reconstructions using the sort_neuron_swc plugin (using the 
gold standard soma location as the root) in Vaa3D. Some of the tested 
algorithms did not perform radius estimation by default. To provide 
a comparable set of reconstructions, we estimated the radius of the 
trees using the neuron_radius plugin. We analyzed the morphological 
features of post-processed trees with the batch_compute function of 
the blast_neuron plugin. Supplementary Table 3 lists the definitions 
of the morphological features used in the analysis. Furthermore, we 
quantified the Sholl intersection profile scale, centripetal bias and 
root angle distributions of the trees using the TREES toolbox functions 
dissectSholl_tree and rootangle_tree (ref. 34).

Interactive data analysis app. The datasets collected in this project are 
large, and the exploration is time-consuming. To enable fast interaction 
with the data, we developed an interactive analysis web app in Shiny 
(https://www.shinyapps.io/, v1.6.0). Shiny enables the development of 
web applications that build on the R programming language utilities for 
statistical analysis and data plotting. On the server, users can analyze 
dataset images, gold standard annotations, automatic reconstructions 
and metadata associated with each dataset. The app enables users to 
interactively choose the image quality and tree morphology metrics 
used for dimensionality reduction and clustering analyses and perform 
reconstruction quality benchmarking. A detailed description of the 
web app organization and the analyses it performs can be found in 
the Supplementary Information.

Generation of consensus trees. Next, we developed an algorithm 
to iteratively merge the reconstructions obtained by different 
automatic algorithms. The aim of the algorithm is to conserve tree 
regions reliably retrieved by different algorithms and discard possible 
algorithm-dependent artifacts to obtain a consensus reconstruction 
that is potentially closer to the ground truth. The consensus tree algo-
rithm performs the following steps: (1) K-centroid clustering of all of 
the nodes in input neurons (the number of clusters is defined as the 
average number of nodes of the input neurons); (2) for each cluster 
resulting from the K-centroid clustering, the center of the cluster is 
taken as a consensus node; (3) by iterating through all node connections 
in input trees, the weights of the consensus nodes are established by 
collecting votes from the connections from individual input neuron 
trees (every time a pair of nodes of two different clusters are con-
nected in input trees, a vote is added to the connection between the 
consensus nodes of the respective clusters); and (4) use of a maximum 
spanning tree algorithm92 to connect consensus nodes to form the 
consensus tree. An implementation of the algorithm can be found as a 
Vaa3D plugin called ‘consensus_skeleton_2’. We did statistical tests for 
errors in morphological metrics of automatic reconstructions using 
the stat_compare_means function of the ggpubr package (v0.4.0). It is 
worth noting that development of the consensus tree algorithms was 
performed without access to the gold standard data.

Prediction of the best automatic reconstruction algorithm. To pre-
dict the best algorithm in a set of automatic reconstruction methods, 
we used the neuromorphological features of the automatic recon-
struction and the image quality features of a dataset. The statistics 
were transformed using the Box–Cox method to ensure normality. 
We generated a support vector machine regression learner using the 
mlr3 (v0.12.0) package in R (v3.4.1). To generate learning curves, we 
used the generateLearningCurveData of the mlr (v2.18.0). To generate 

the regression results of Fig. 5, the data were split by the IDs of the 
datasets into 15% for testing and 85% for training sets. We predicted the 
percentage of different structure between the automatic reconstruc-
tion and the gold standard with the regression model. We obtained the 
regression coefficient of determination using the msr function of the 
mlr3 package (v0.12.0). We did Wilcoxon tests (two-sided) using the 
stat_compare_means function of the ggpubr package (v0.4.0). The 
code for this analysis can be found at https://github.com/lmanubens/
BigNeuron/blob/main/mlr_regression/mlr3_regression_3DIQ.R.

Showcase of best algorithm prediction on fMOST data. We predicted 
best-performing algorithms in fMOST datasets. A total of 40 fMOST 
image volumes were kindly provided by L. Ding from the Institute for 
Brain and Intelligence, Southeast University (20 dendritic trees and 20 
axonal trees). We processed the images with the same steps used in the 
Gold166 dataset and obtained automatic and consensus reconstruc-
tions. We correspondingly obtained image quality and neuromorpho-
logical features. After applying a Box–Cox transformation, all of the 
features obtained were used as inputs to the support vector machine 
regression model obtained as described in the previous section.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
3D image volumes of the Gold166 dataset and gold standard reconstruc-
tions are available at http://web.bii.a-star.edu.sg/bigneuron/gold166.
zip. Bench-testing automated reconstructions can be downloaded from 
https://github.com/BigNeuron/Data/releases/tag/gold166_bt_v1.0. 
The fMOST showcase datasets can be found at https://zenodo.org/
record/7556104 ref. 93. The complete set of image volumes gathered 
throughout the project, amounting to ~4 TB of data, is available upon 
request. Databases of the Allen Mouse and Human Cell Types projects 
(http://celltypes.brain-map.org/), Taiwan FlyCircuits (http://www. 
flycircuit.tw/), and Janelia FlyLight (https://www.janelia.org/project- 
team/flylight) can be found in the given links. Source data are provided 
with this paper.

Code availability
The source code developed is released as open source and is available 
at https://github.com/lmanubens/BigNeuron. The Shiny web app 
can be used at https://linusmg.shinyapps.io/BigNeuron_Gold166/ 
and https://neuroxiv.net/bigneuron/. The Shiny app source code can 
be found at https://github.com/lmanubens/BigNeuron/tree/main/
shiny_app ref. 94. With a slightly revised MIT license, see BigNeuron 
Shiny app license in the Supplementary Note . Source code of auto-
mated reconstruction algorithms developed throughout the project 
can be found at https://github.com/Vaa3D/vaa3d_tools/tree/mas-
ter/released_plugins/v3d_plugins. The Vaa3D plugins license is also a 
slightly revised MIT license that can be found at: https://github.com/
Vaa3D/vaa3d_tools/blob/master/LICENSE. The source code for the con-
sensus tree algorithm, licensed as a Vaa3D plugin, is publicly available 
at https://github.com/Vaa3D/vaa3d_tools/tree/master/hackathon/
xiaoxiaol/consensus_skeleton_2.
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Extended Data Fig. 1 | A web app to allow interactive navigation of 
heterogeneous bench-testing results. Visualization of the Shiny interactive 
web app (https://linusmg.shinyapps.io/BigNeuron_Gold166/ and  
https://neuroxiv.net/bigneuron/). The data loaded into the app includes the 
dataset images, gold standard annotations, automatic reconstructions, and 

metadata associated with each dataset. Users can interactively choose the 
image quality and tree morphology metrics used for dimensionality reduction 
and cluster analysis, and perform reconstruction quality benchmarking. 
Documentation for the usage of the app can be found at https://github.com/
lmanubens/BigNeuron.

http://www.nature.com/naturemethods
https://linusmg.shinyapps.io/BigNeuron_Gold166/
https://neuroxiv.net/bigneuron/
https://neuroxiv.net/bigneuron/
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Extended Data Fig. 2 | Bayesian Information Criterion (BIC) for parametrized 
Gaussian Mixture models fitted by the expectation-maximization algorithm. 
Each colored symbol indicates the BIC for a given mixture model with a 
number of components specified in the x axis. ‘EII’: spherical, equal volume; 
‘VII’: spherical, unequal volume; ‘EEE’: ellipsoidal, equal volume, shape, and 

orientation; ‘EEV’: ellipsoidal, equal volume and equal shape. The dashed light 
blue line indicates the maximum BIC. The Bayesian Information Criterion is a 
measure for the comparative evaluation among a finite set of statistical models, 
the measure is based on maximizing the likelihood function while penalizing for 
the number of parameters in the models36.
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Extended Data Fig. 3 | Overall benchmark of best-performing algorithms.  
a Number of images in which specific automatic tracing algorithms outperform 
the others. For each image, the algorithm having the smallest average bi-
directional entire structure average distance against the gold standard was 
considered the best. The number of times each algorithm was found to be best 
is shown as a bar plot. The number of times each algorithm produced a result 

in the full Gold166 dataset is indicated in parentheses in the labels. b Overall 
benchmark of all algorithms accounting for all measured distances to gold 
standards with an aggregated metric. Mean + /− Standard Errors are shown as 
bar plots. Each dot represents the distance quantification for each neuron. The 
number of times each algorithm produced a result in the full Gold166 dataset is 
indicated in parentheses in the labels.
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Extended Data Fig. 4 | Supplementary benchmarks of best-performing 
algorithms. Benchmarks of the 6 overall best-performing algorithms based on 
Extended Data Fig. 3a for subsets of Gold166 with different CNR based on the 
Otsu threshold. Means + /− Standard Errors are presented as bar plots. Each dot 

represents the distance quantification for each neuron. The number of times 
each algorithm produced a result in the full Gold166 dataset is indicated in 
parentheses in the labels.
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Extended Data Fig. 5 | Image quality metrics correlate with the accuracy of 
automated tracing. Hierarchical clustering among image quality metrics, tree 
morphological features, and reconstruction quality. Reconstruction quality 
correlates with a set of features, indicating that more focused images of big 
neurons tend to provide better automatic reconstruction results. a The heatmap 
indicates color-coded pairwise Pearson correlations between metrics obtained 

for consensus tree reconstructions. b–d Correlation plots for image quality and 
dendritic tree morphology features (B: Focus Score in SWC nodes, C: parent–
daughter ratio, and D: bifurcation angle remote) and consensus reconstruction 
quality (% of different structure). P values indicate the result of two-sided tests 
for correlation.
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Extended Data Fig. 6 | Gold166 subset that most closely resembles fMOST 
data according to image quality features. a Principal Component Analysis 
of gold standard datasets accounting for their image quality metrics. Each 
point is one gold standard image volume, and the color indicates the dataset it 
comes from. Arrows represent the direction of each variable in the PCA space. 
Longer arrows belong to variables that are well represented by the two principal 

components. Given that 68% of the density of multi variate normal distributions 
are within 1 Mahalanobis distance of the mean, 68% confidence normal data 
ellipses for each group are drawn with solid lines. b Percentage of different 
structure between automatic reconstructions and gold standard trees for the 
Zebrafish larvae RGC neurons. Mean + /− Standard Errors of percentage of 
different structure are shown as bar plots.
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