
Underwater Vehicle Localisation using Extended
Kalman Filter
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Contribution
This work presents design and application of an algorithm that accom-
plishes the localisation of the Ocean Systems Lab’s Nessie autonomous
underwater vehicle (AUV) fusing together measurements from a number
of sensors mounted on it. Well known Extended Kalman Filter (EKF) algo-
rithm was implemented as a solution for robot self-localisation. Benefits
of the usage of EKF for obtaining the position and orientation of the robot
include more robust estimation which takes into account different types of
measurements and the relations between them. Navigation is intended to
work in an unstructured environment relying on the odometry and acous-
tic positioning.

AUV Navigation
Vehicle state is a vector that contains variables relevant for localising the
vehicle. Vehicle navigation state describes its position and motion within
the environment. Elements of the state vector X(k) are treated as Gaus-
sian Random Variables (GRV).

X(k) =
[
x y z a u v w ψ ϕ ψ̇ ϕ̇

]T
(1)

x, y, z and a take the value of north, east, depth and altitude. u, v and w
stand for linear velocities: surge, sway and heave, respectfully. The rest of
the state vector covers angular values: ψ and ϕ are used as yaw and pitch,
hence describing the vehicle orientation. ψ̇ and ϕ̇ are angular velocities:
yaw rate and pitch rate.

east

depth

dz/dt = heave velocity
dx/dt = surge velocity

x

y

z

dy/dt = sway velocity

north x (north)

x (east)

z (depth)

 (yaw)

 (pitch)

ψ

φ

a (altitude)

5 d.o.f. system model is describing how the state X(k) evolves in time. It
is a constant speed model [1] that uses previous state X(k − 1) corrupted
with zero-mean GRV acceleration noise to make a prediction of the next
state vector value.

System model
A constant velocity nonlinear model was used as a basis for the EKF state
transition model.

X(k) = f(X(k − 1),N(k − 1)) (2)

x
y
z
a
u
v
w
ψ
ϕ

ψ̇
ϕ̇


(k)

=



x+ (uT + u̇T 2

2 ) cos(ψ) cos(ϕ)− (vT + v̇ T 2

2 ) sin(ψ) cos(ϕ)

y + (uT + u̇T 2

2 ) sin(ψ) cos(ϕ) + (vT + v̇ T 2

2 ) cos(ψ) cos(ϕ)

z + (wT + ẇ T 2
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(3)
N(k) =

[
u̇ v̇ ẇ ψ̈ ϕ̈

]T
represents the process noise consisting of

linear and angular accelerations. State vector elements are measured di-
rectly, hence measurement model h() can be expressed with matrix con-
taining “ones” at particular positions since the measurement relation be-
comes equality.

Z(k) = h(X(k),M(k)) = HX(k | k − 1) +M(k) (4)

M(k) is a zero-mean GRV vector representing the measurement noise.
Measurement (observation) and process noise are characterised with di-
agonal covariation matrices whose elements (σN ) are given as filtering
parameters influencing estimation strategy.

Sensor Fusion
EKF implements sensor fusion. One of the features of navigation pro-
cess is that sensor measurements are not available all the time. Simply
- messages from sensors arrive at different moments and sensors could
be unavailable due to different causes. The idea is to take all the gathered
information at the moment of filtering and integrate it together in the mea-
surement model (Eq. 5), which varies depending on the measured values
and sensors used for the measurement.
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,H(k) =

[
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,R(k) =

[
σ2
sen.I 0
0 σ2

sen.II

]
(5)

Results
Navigation method was tested on number of real missions with Nessie
vehicle:
• Spiral trajectory and surfacing action: localisation results in a smooth
path, less prone to drifting than dead reckoning. EKF filters out the
absolute position (LBL) outliers. Furthermore, sensor fusion is able
to compensate for the missing measurements. Tuning of the filter pa-
rameters (σsen.) enables giving more or less trust in particular sensor
measurements. Question of suitable choice of heading sensor can be
treated by adjusting the trust given to yaw and yaw rate measurement
obtained from different devices.
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• Rectangular trajectory aided with GPS position measurements: local-
isation using Unscented Kalman Filter (UKF) was simulated using the
real data. Trajectory obtained using UKF tends to be slightly more precise
compared with the one obtained using EKF.
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EKF improves the localisation performance, even when confined to blend
imprecise and sketchy position data from GPS.
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