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Chapter One

Introduction

1.1 Need for neuron reconstruction

Fascination with neuronal cells dates back to the pioneering investigation over
a century ago when a glance at a sample of silver-stained brain tissue dis-

closed the intricate network that forms the very essence of the nervous system.
Remarkable milestone drawings of Santiago Ramón y Cajal [214, 261] – the found-
ing father of neuroscience – remain as vivid as the digital images acquired by the
newest fluorescence microscope. Ever since his breakthrough work, numerous stud-
ies [16,67,68,100,165,166,230,272] have explored the morphological features of neurons
to gain deeper insight into their functionality, and the discipline gradually established
as neuroscience [132]. In the meantime, the astounding advancement of electrical
engineering and computer science laid the foundation for more specialized disciplines
such as neuroinformatics and neural engineering (Fig. 1.1). Recently, attention has
been directed towards brain science – the field dedicated to the investigation of the
captivating mechanism of, arguably, the most complex and enigmatic organ. The
disclosure of Cajal’s groundbreaking neuron doctrine

1 brought to light the idea that
the nervous system is a network composed of building blocks called neuronal cells.
Each cell (Fig. 1.2) further represents a sophisticated, interconnected processing com-
ponent that both transmits and processes the information. Di↵erent neuronal cells
have di↵erent roles, and hence varying properties, including morphology, which o↵ers
useful evidences related to their functionality.

In the endeavor to understand neuron behavior and unravel the underlying prin-
ciples, knowledge of neuronal cell morphology is essential for performing specialized
analyses, which typically comprise the examination of changes in neuronal structure
caused by external stimuli [106, 138], modeling [16], statistical analysis [199, 220],
describing connectivity patterns [130], branching patterns [271], cataloging neuron
phenotypes [69], classifying neuron types [11], or simulating electrophysiological be-
havior. The morphology of a neuron can be captured to a high level of detail using
microscopic imaging, but many studies require a more explicit representation than
o↵ered by the resulting images, emphasizing the need for digital reconstruction of the
morphology from the images into a tree-like graph structure. For example, the widely
used Sholl analysis [242], commonly employed for quantification of the morphological
characteristics of neurons [99], is based on neuron reconstructions as a blue print of

1Every neuron in the brain is a separate unit. Neurons conduct information in a defined direction
and communicate across their synapses [105].
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Figure 1.1: Timeline overview of selected accomplishments related to neuron analysis.
Advances in electrical engineering and computer science have been crucial for the great
achievements in recent decades.

morphology. And numerous other neuroscientific studies directly rely on accurate
knowledge of neuronal morphology in the form of digital reconstructions [115, 188].
This makes neuron reconstruction from microscopic images a highly important tech-
nical problem in the digital era of neuroscience [194].

Neuron reconstruction methodology has coevolved with technological advances in
computing and imaging. With the early analogue computers [103], it became possible
to connect a computer with a microscope and use analogue linear motion transducers
to significantly speed up the gathering of information about the dendritic and ax-
onal patterns. Subsequent generations of digital computers [45, 46] brought further
advances to neuron reconstruction by mixing computer graphics with the neuron im-
age and using advanced operator controls such as a 3D joystick. The introduction of
desktop PC hardware and software in the late decades of the 20th century increased
the impact of computers [115], which by then were powerful enough to implement
algorithms that, although previously developed, could not be directly run and shared
between the users on a needed scale. It also marked the period when the first com-
mercial and open-source academic software tools emerged (Fig. 1.2). But with the
ever growing amount and complexity of data, the quest for better solutions to neuron
reconstruction continued. At present, even though many methods have been pub-
lished and many tools are available, neurobiologists often still resort to manual or
interactive approaches to get satisfactory results, indicating that reliable automated
neuron reconstruction is a major challenge.
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Figure 1.2: Example neuronal arbors from NeuroMorpho.org showcase the morpholog-
ical diversity across species, brain regions, and laboratories worldwide. The renderings
were exported using the web-based neuron morphology viewer [18].

1.2 Challenges in neuron reconstruction

The two crucial engineering tasks in neuron reconstruction are 1) reducing the time
needed to obtain the reconstruction compared to manual delineation and 2) emulat-
ing or possibly surpassing the accuracy of the reconstruction compared to manual
delineation. The astonishing increase in volume of microscopic imaging data rules
out manual processing [170] and requires automated solutions that are fast enough
to ensure high throughput in neuron analysis [198]. Moreover, the wide variety of
neurons and microscopic imaging modalities (dark-field, bright-field, confocal) puts
high demands on automated processing [193, 260], and has resulted in a plethora of
reconstruction methods [192]. To date, two grand challenges have been organized in
the field, namely DIADEM2 (short for digital reconstruction of axonal and dendritic
morphology) and BigNeuron3 [102,190,194], which aimed to stimulate community ef-
forts to improve the state-of-the-art of neuron reconstruction. Despite great advance-
ments, however, both engineering tasks still remain a major challenge. For instance,
a 20-fold speedup compared to manual reconstruction has been projected [154], and
proof-editing of automated reconstructions is still a bottleneck [193].

In this thesis the focus is on detection and reconstruction of neurons from fluores-
cence microscopy images. Here, neurons are first labeled using a fluorescent dye in
order to expose their structure, and then digital images are acquired using a light mi-
croscope, which are subsequently computer processed to reconstruct the morphology
of the neurons. In practice, reconstruction algorithms often need to be customized to
address a particular biological question or deal with a particular experimental condi-
tion, which may prevent them from being applicable across di↵erent experiments or
laboratories. Key obstacles in achieving accurate and robust automation in neuron
reconstruction [2, 76, 169] are the following:

1) The morphology of neurons is remarkably diverse (Fig. 1.2) across brain regions
and biological species. Even to expert human observers, the structural complexity of
the neuronal arbors poses a significant challenge to visual comprehension, and manual
delineation may easily take hours to days per neuron. This not only underscores once
again the need for automation but also indicates that automated solutions require

2http://diademchallenge.org
3http://bigneuron.org
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very powerful computer vision algorithms.
2) Neurons may be imaged using a variety of microscopy imaging modalities

[76, 169]. Each modality has its strengths and weaknesses, but all su↵er from the
di↵raction limit, causing a blurring of structures below that limit as characterized
by the point-spread function (PSF) of the microscope [60], which under reasonable
assumptions may be approximated by the Gaussian function [303]. The diameters of
dendrites and axons may vary significantly and be smaller (sub-µm) than the lateral
resolution of the microscope. Moreover, the axial resolution is often even multiple
times lower, further limiting the level of detail attainable in neuron reconstruction.
Also, since neurons may have a relatively huge spatial extent compared to the field of
view of the microscope, they are often imaged with lower magnification factors and
thus larger voxel sizes, which limits the level of detail even more.

3) Eventually, all types of optical imaging are a↵ected by photon noise [274],
being a Poisson process. In accordance with earlier studies, the signal-to-noise ratio
(SNR) of a microscope image is expressed as the ratio of the intensity inside a neuron
above the background and the standard deviation of the noise inside the neuron
[50,250]. Depending on the illumination intensity and the fluorophore labeling density
and homogeneity in an experiment, the SNR level may vary significantly between
images, and even within one image. In addition, images may contain other types of
background “noise”, such as debris.

4) The ever increasing data volumes in neuron imaging counterbalance the increas-
ing memory and processing speed of modern computers. Existing methods for neuron
reconstruction often do not scale well with image volume size in terms of required
processing time and accuracy [198]. Dedicated engineering strategies to allow exist-
ing algorithms to reconstruct unlimited data volumes have been reported [198, 311],
using data tiling approaches, but the challenge remains to develop algorithms that
are not too adversely a↵ected by image volume.

5) Evaluation of neuron reconstruction algorithms requires the availability of a
reference or “gold standard”. Reference reconstructions are typically obtained by
expert manual annotation, which su↵ers from inter-observer and even intra-observer
variability. Careful proof-editing [193] and making consensus reconstructions from
multiple observers [190] to improve the gold standard is extremely time consuming and
not always feasible. Alternatively, synthetic neuron images may be used [136,210,212],
whose true reconstructions are known by definition, but which are inevitably less
realistic and less representative of the real problem. Thus, if the ultimate goal is
to outperform humans in terms of both time and accuracy, new ways of evaluating
algorithms are needed that do not depend as much on humans.

1.3 Common neuron reconstruction strategies

Single-cell neuron reconstruction methods typically employ di↵erent algorithmic ap-
proaches. The vast majority of works treats reconstruction as a modular task and
uses a pipeline of di↵erent algorithmic units dedicated to processing particular tree
components [169]. Nevertheless, there is inevitably a degree of commonality and in-
terdependence among methods, as a cascade of processing units requires the output of
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a) Shortest path tracing b) Minimum spanning tree c) Path-pruning

Figure 1.3: Common neuron reconstruction strategies. a) Finding an optimal path
between any two control points. b) Inferring the optimal tree structure from a set of
landmark points serving as nodes. c) Pruning an over-completely traced tree.

one computation stage to be used in the next. Reconstruction accuracy also depends
on the ability of a method to generalize well, which implies undertaking a fair share
of global reasoning. The many methods introduced over the years [2, 76, 169] can be
broadly cast into three categories of strategies (Fig. 1.3), each involving various opti-
mization tasks: 1) finding an optimal path between given control points (Fig. 1.3a),
2) inferring an optimal tree from a set of given landmark points that already belong
to the tree and that serve as its nodes (Fig. 1.3b), and 3) pruning an over-traced and
thus over-represented tree (Fig. 1.3c). Of course, this categorization is not absolutely
rigorous, and often the di↵erent strategies are combined.

Neuron branch tracing (Fig. 1.3a) can be interpreted as an energy or cost op-
timization problem [171, 195]. A classic example of this is to compute an optimal
(“shortest”) path through the voxel grid, where the given geodesic metric or cost
function is defined to weigh the transition between grid elements (graph vertices).
This strategy has been used in many published methods [155, 171, 196], notably for
semi-automated neuron tracing, where the control points are given by the user or are
(interactively) computed from the image. Notable tracing approaches are geodesic
shortest path [195] or live-wire segmentation [171] solved using Dijsktra’s shortest-
path algorithm [73]. The downside of tracing defined in this manner is the necessity
of having control points, which can be a challenge to obtain automatically and re-
quire global image reasoning. Computed traces can further be refined with energy
optimization and solved using gradient descent algorithm [191,195].

The commonly used format to store reconstruction results (Section 1.5) assumes
neurons to be tree-like structures consisting of connected nodes. Each two successive
nodes constitute a neuronal branch compartment. Thus the essential geometrical
quantities computed during tracing are the node center coordinates p = (x, y, z) and
corresponding local (spherical) radii r of the neuronal tree at those points. In addition
the local direction v = (vx, vy, vz) at p may be computed. Taken together, a node
is represented by a vector x = [p, r, v], and a branch by a sequence of N nodes X =
{x1, . . . , xi, . . . , xN}. The cumulative cost used by the optimization scheme to steer
the tracing toward an optimal solution is computed over all nodes and compartments.
Aside from geometrical constraints this typically also includes constraints based on
image feature values such as local intensity or tubularity:

C(X) =
X

i
c(xi, I(xi))�x (1.1)
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where the cost function c could for example be decompose into:

c(x, I(x)) = ↵c◆(x, I(x)) + (1� ↵)c�(x) (1.2)

with c◆ denoting some intensity-based cost, c� a geometry-based cost, and ↵ 2 [0, 1]
a weight factor. The intensity-based cost could directly use intensities:

c◆(x, I(x)) = I(x) (1.3)

or for example the exponential of the inverse intensity [195]:

c◆(x, I(x)) = exp
⇣
�(1� Ĩ(x))2

⌘
(1.4)

where Ĩ(x) = Ĩ(p) = I(p)/Imax, with Imax ⌘ maxp {I(p)}, denotes normalized inten-
sity. A popular alternative is to use:

c◆(x, I(x)) = ⇢(p) (1.5)

where ⇢ denotes some tubularity measure computed from the image intensities. If
computed over a set of scales, it is written ⇢⌃, with ⌃ = {�k}, 1  k  K, and
�k denoting the individual scales. In particular the eigenvalues of the Hessian ma-
trix computed at di↵erent scales are often used to measure the tubularity of local
image structure [92, 171, 224, 254]. Tubularity measures are commonly computed at
prefiltering stage and aim to reduce the presence of noise and non-tubular structures.
They can be computed in an unsupervised manner, independent of the input data, or
can be learned from the data in a supervised way [149, 247], enabling adaption to a
specific application based on the training. The downside of the latter approach, aside
from having to design a suitable machine learning model, is that it requires dedicated
training, which in practice can be time and resource consuming.

Trace refinement can be based on the discrepancy between the node positions and
the centers of the local image intensity profiles. For example, to further align a trace
to the underlying image intensities, the following cost could be minimized:

c◆(x, I(x)) = exp

 
�

P
y2⇥(x)kx� yk2I(y)�y
P

y2⇥(x) I(y)�y

!
(1.6)

where ⇥(x) denotes a local spatial neighborhood of x. Such refinement boils down to
image intensity based mean-shifting [52] of the node position, which can also be used
to refine a collection of the overlapping tracings [210]. Alternatively, the zero-mean
normalized cross-correlation (ZNCC), which is independent of intensity o↵sets and
scalings, can be used to quantify the similarity of the local image intensity profile and
a theoretical model profile for trace refinement:

c◆(x, I(x)) =

P
p2⇥(x)

(I(p)� Ī(p))(G�(p)� Ḡ�)

r P
p2⇥(x)

(I(p)� Ī(p))2
P

p2⇥(x)

(G�(p)� Ḡ�)2
(1.7)
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where in this case ⇥(x) typically is a cylindrical neighborhood of node x = [p,�, v],
centered at p with radius � and directed along v, and G� denotes the model profile
at given scale �, while Ī and Ḡ� are the respective mean intensity values of the image
and the model inside region ⇥. In microscope images of neurons a reasonable choice
for G� is the Gaussian profile in the cross-sectional plane and the uniform profile in
the axial plane of the cylindrical neighborhood [209].

The geometry-based cost in (1.2) can incorporate the vectorial (directional) align-
ment of nodes along the estimated tubularity direction [171]:

c�(x) = c�(xi, xi+1) =
1

2

⇣p
1� '(pi, pi+1) +

p
1� '(pi+1, pi)

⌘
(1.8)

where '(pi, pj) = |vi ·uij | quantifies the alignment of the tubularity directions of two
successive trace points with the unit link vector uij = (pj � pi)/kpj � pik between
them. Another example of a geometry-based cost is the trace smoothness [195] or
bending energy [212] estimated using the second-order derivative:

c�(x) = c�(xi�1, xi, xi+1) =
X

i
(pi�1 � 2pi + pi+1)

2�p (1.9)

Besides Dijkstra’s shortest path algorithm, numerous other approaches to op-
timized local branch tracing have been reported. For example, energy optimiza-
tion techniques such as active contours have been used to determine the optimal
parametrized skeleton [228], or to directly find the open-curve representing a branch
using gradient-vector flow to optimize the energy [283]. Although path optimization
methods require initialization in the form of control points, which can be a critical
step, the use of active contours may refine even the initialization and improve the
alignment of the control points to the local image context. The general downside
of active contours, however, is the possibility of ending up with many discontinued
branch segments due to gaps in low quality images. An alternative is to use the
fast marching (FM) algorithm [233]. Conceptually similar to Dijkstra’s shortest path
algorithm, FM appears to be particularly useful for tracing curvilinear structures
such as neuronal branches [24, 177, 192, 222, 273, 291], as it is able to bridge gaps.
Particular implementations of FM-based neuron reconstruction, such as the APP2
method [291], have been very e↵ective in reducing false-positives occurring in previ-
ous approaches [192,273]. Follow-up FM-based works have reported improvements in
the speed of tracing discontinuous image structures by using gradient-descent com-
bined with reinitialization [177] and back-tracking [153].

Accurately merging control points and any computed traces between them into
a tree representation (Fig. 1.3b) is a significant challenge due to the many possible
alternatives to explore and evaluate. Since an exhaustive search for the optimal solu-
tion may require prohibitive amounts of computation time, the problem of assembling
the many pieces of the neuron tree structure is often solved using approximations, but
even so it remains an ongoing challenge [190]. A significant share of the methods aims
at finding a globally optimal solution, where the set of node candidates is turned into
a weighted graph, and the reconstruction problem consists in extracting the optimal
tree from this graph. One prominent method is the NP-complete4 minimum spanning

4Non-deterministic polynomial-time.
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tree (MST) algorithm [107,269,292,300]. A possible approach is to extract minimum
trees spanning a subset of the graph’s edges, but the solution to this problem is
NP-hard [54] involving plenty of exploration scenarios, and approximative solutions
are used in practice [33, 107]. An alternative [107, 269, 292] is to find a k-minimum
spanning tree (k-MST) spanning a subset of the graph’s nodes (the control points)
as opposed to the original MST spanning all nodes. Various criteria have been used
with the MST algorithm to weigh and connect graph elements, for example based on
distances and intensities [300], or on probabilistic costs computed from the proximity
of elements towards the middle of a filament [269].

A particularly prominent family of methods is based on the pruning strategy
(Fig. 1.3c) to reconstruct neurons. Such methods start with an over-complete neuron
tracing which is then gradually reduced (“pruned”) to converge towards an optimal
concise representation of the neuronal tree. The underlying idea is to initially capture
all voxels belonging to a neuron in a graph and subsequently to iteratively discard
particular graph elements using various criteria. For example, in all-path pruning
(APP) [192], over-complete traces are obtained using Dijkstra’s algorithm, and the
iterative pruning starts with the leaf nodes of the resulting graph. It executes in
linear time, ensuring maximum coverage and minimum redundancy of the underlying
neuron signal. Graph nodes that are already covered by others are removed with
higher priority. A similar approach was employed in the follow-up work APP2 [291],
which introduced several improvements, such as the usage of a long-segment-first
hierarchical pruning and dedicated preprocessing of the input image stack intended
to optimize fast-marching based tracing.

1.4 Neuron reconstruction using Bayesian filtering

One of the main novelties proposed in this thesis to improve on commonly used neuron
reconstruction strategies is the use of Bayesian filtering. Bayesian reasoning operates
with the assumption that the states (quantities of interest) of any given system are
not measurable directly but can be estimated (filtered) from observations using a
recursive approach involving two essential processing steps: prediction and update
[77]. More specifically, the unknown (hidden) states are expressed as a series of state
vectors {xt; t 2 N, t � 0} and are estimated in a probabilistic fashion using sequentially
arriving independent observations {zt; t 2 N, t > 0}, leading to a posterior distribution
p(xt|zt) of the states. This approach has been used extensively for tracking objects in
sequential data (time series) in many applications [164,215,223,257] but may also be
applied to the problem of tracing neuronal branches in static data (spatial images).
Here, the states could be defined as the node vectors x = [p, r, v] introduced in the
previous section, which are predicted and updated from one node to the next using
Bayesian filtering. The actual state value x̂ of any given node may afterwards be
estimated from the posterior distribution p(x|z) using for instance the maximum a-
posteriori (MAP) approach or computing the centroid.

Formally, the joint posterior distribution of all state vectors up until (recursion)
time t, that is x0:t ⌘ {x1, x2, . . . , xt}, is obtained from corresponding observations,
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z1:t ⌘ {z1, z2, . . . , zt}, by applying Bayes’ theorem:

p(x0:t|z1:t) =
p(z1:t|x0:t)p(x0:t)R

p(z1:t|x0:t)p(x0:t)dx0:t
(1.10)

and the marginal distribution p(xt|z1:t) can be computed by recursively applying

Prediction: p(xt|z1:t�1) =

Z
p(xt|xt�1)p(xt�1|z1:t�1)dxt�1 (1.11)

Update: p(xt|z1:t) =
p(zt|xt)p(xt|z1:t�1)R
p(zt|xt)p(xt|z1:t�1)dxt

(1.12)

The recursion mechanism uses a transition prior p(xt|xt�1), also called the transition
model, to predict the next hidden state distribution from the previous, which allows
to incorporate prior knowledge about state dynamics. And the predicted states are
subsequently updated using the likelihood p(zt|xt), also called the observation model,
which allows to incorporate prior knowledge about state appearance. Equations (1.11)
and (1.12) can be rewritten more concisely as:

p(xt|z1:t) / p(zt|xt)
Z
p(xt|xt�1)p(xt�1|z1:t�1)dxt�1 (1.13)

By custom design of the two models involved, the Bayesian filtering framework can
be made to work for any given application, making it a fairly universal tool.

Several well-known analytical solutions to Bayesian filtering, such as the famous
Kalman filter (KF) or hidden Markov model (HMM) filter, are based on mathematical
assumptions that turn out to be very limiting in practice. For instance, the closed-
form solution in the case of KF is based on the assumption that the models are linear
and the distributions are Gaussian, which may not be accurate. Numerous other ap-
proximation schemes (extended KF, grid-based filters, et cetera) have been proposed
with varying accuracy, practical feasibility, and computational cost. A popular alter-
native is sequential Monte Carlo (SMC) filtering [12], in the literature also referred to
as particle filtering (PF), which has been used for a wide range of applications and is
also the method of choice in this thesis. It approximates the posterior using discrete
samples or particles5 and corresponding weights:

n
x(i)
t
, w

(i)
t
; i = 1, . . . , N

o
(1.14)

so that the possibly intractable calculation of (1.13) for non-linear and/or non-Gaussian
cases is made tractable again. Here, N denotes the number of samples, and using
more samples generally leads to better approximation:

p(xt|z1:t) ⇡
NX

i=1

w
(i)
t
�
�
xt � x(i)

t

�
(1.15)

5These terms are used interchangeably in the SMC-related content of this thesis.
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During SMC filtering, the weights are updated using a process known as sequential
importance sampling (SIS), involving an importance function ⇡:

w
(i)
t
/ w

(i)
t�1

p(zt|x(i)t
)p(x(i)

t
|x(i)

t�1)

⇡(x(i)
t
|x(i)0:t�1, z1:t)

(1.16)

One problem with SIS is the possibility of weight deterioration over time, leading
to particle degeneration and a very sparse particle distribution, as a consequence
of which the approximation fails to accurately represent the posterior. This can be
avoided by regular resampling of the posterior distribution so that particles having
higher importance weights remain more numerous.

1.5 Neuron reconstruction tools and formats

Reconstruction software is nowadays implemented in a wide range of programming
languages on di↵erent computer platforms and distributed over all regularly used op-
erating systems [2,169]. The work presented in this thesis focuses on Java implemen-
tation within the ImageJ platform [1, 155, 200] and on C++ implementation for the
Vaa3D platform [189]. Both platforms are widely used in bioimage analysis and thus
facilitate deployment of the proposed methods. The latter is also the base platform
for the BigNeuron project and provides various means to evaluate and benchmark
neuron reconstruction methods. Evaluation is commonly carried out by comparing
the reconstructed neuron tree with a gold standard reconstruction. In other words,
measuring the performance of a neuron reconstruction method boils down to quan-
tifying the resemblance of two graphs, one resulting from the method and the other
typically from manual annotation of the image data. Resemblance is often computed
in terms of internodal spatial distances but can also be based on a comparison of
quantitative features computed from the graphs using tools such as L-Measure [231]
and BlastNeuron [282].

The most widely accepted format to store, exchange, and compare reconstructed
neuron trees is the SWC format [44], named after Stockley, Wheal, and Cole, who first
described it [256]. It is an open-source space-delimited text format that stores tree
structures as a list of nodes, N = {n1, . . . , ni, . . . , nj , . . . }, where each node contains
certain properties related to the underlying neuronal geometry and topology. More
specifically, each node in the SWC format, being a single line in the SWC file, contains
seven attributes: node index identifier i, node type (soma, dendrite, axon, et cetera),
three spatial coordinates (xi, yi, zi), radius ri, and a parent node index (Fig 1.4). By
convention the latter is set to �1 for the origin node. To conform with a tree structure,
each node nj may have only one parent ni, with lower node index (i < j). Loops and
disconnected branches should not exist as that would violate the tree-like structure.
Even though there exist some variations of the SWC format, especially concerning
the definition of the soma node6,7,8 for which the simple spherical model may not be

6http://research.mssm.edu/cnic/swc.html
7http://www.neuronland.org/NLMorphologyConverter/MorphologyFormats/SWC/Spec.html
8NeuroMorpho.org FAQ: What is SWC format? http://www.neuromorpho.org/myfaq.jsp
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a) b) c) d)

Figure 1.4: Neuron morphology representation from image to digital reconstruction
data format. a) Single neuron image. b) Digital reconstruction of the neuron exported
using the web-based neuron morphology viewer [18]. c) Illustration of the SWC
format as a list of nodes ni. d) Detailed visualization of one segment (truncated
cone) constituted by two connected nodes (ni, nj) and basic node attributes.

suitable [18], it is straightforward to implement and use, which explains its widespread
adoption in many neuron morphology projects [15,190]. Some reconstruction methods
are even based directly on the SWC format [86]. The work described in this thesis
uses exclusively the SWC format.

1.6 Thesis outline and contributions

This thesis addresses the need for further automation of neuronal image analysis. It
presents methodological contributions and experimental results obtained while inves-
tigating computer vision solutions to various problems in extracting useful informa-
tion from microscope images of single neuronal cells. The chapters propose original
approaches to problems such as the detection of landmarks (critical points) of the
neuronal tree, complete tracing and reconstruction of the tree, and the detection of
regions containing neurons in high-content screens. Each chapter describes the pro-
posed method, its software implementation, and evaluation. The remainder of this
section gives a brief outline of the thesis and its contributions.

In Chapter 2 a new method is presented to detect critical points such as junctions
and terminations of the neuronal tree in the images. A junction is loosely defined as
a point where three branches merge, and a termination corresponds to a point where
a branch ends. The proposed detection method uses directional filtering to extract
essential features at every point in an image which are stored in linguistic terms and
subsequently processed using fuzzy logic and rule-based reasoning to classify the point
as background or a specific type of critical point. A custom-tailored set of IF-THEN
rules is proposed for this purpose. The very concept of fuzzy sets allows points to



12 1 Introduction

have partial class memberships and thus helps to cope with uncertainty in the data.
Defining a set of rules that can be truthful to a degree is a convenient approach to
fusing information into an aggregated decision.

In Chapter 3 the Bayesian filtering framework is harnessed in a novel way to
perform tracing of neuronal branch centerlines. The proposed method is based on
probability hypothesis density (PHD) filtering to allow simultaneous tracing of an a
priori unknown number of branches of the neuronal arbor. This specific type of filter-
ing extends probabilistic tracing to the next generalization level and is implemented
using SMC estimation. Compared to other works the present application di↵ers fun-
damentally in the sense that the filtering is applied in space instead of in time. To
make this work, new transition and observation models are proposed, incorporating
prior knowledge about the shape and appearance of neurons in microscope images.
Since the method is probabilistic, multiple runs may yield slightly di↵erent traces,
providing accumulating evidence about the neuronal structures. This is helpful in
the case of structural ambiguities in the images. The experimental results show this
strategy indeed leads to more accurate tracings.

In Chapter 4 the probabilistic tracing idea is extended to a new automatic method
for full neuron reconstruction. The method, named probabilistic neuron reconstructor
(PNR), starts by identifying regions in the image that are highly likely to be neuronal
branches according to a given tubularity measure, and seed points are then extracted
from these regions to initiate the tracing process. Continuing the line of thought in
the previous chapter, the method uses SMC estimation to perform probabilistic over-
tracing of the neuronal arbor, resulting in multiple traces per branch to accumulate
evidence about their morphology, including local branch diameters. Since the very
idea of over-tracing is to collect statistically independent pieces of evidence, the tracing
process from each seed point can be run independently, which in principle allows for
straightforward parallelization to speed up the computations. To obtain the full
reconstruction, the traces are refined and grouped into a single trace per branch,
from which a tree representation is obtained using breadth-first search. An early
version of the PNR method was a contender in the BigNeuron benchmark, where it
already performed quite well. The method presented in this chapter is a substantially
redesigned and improved version of it.

Lastly, in Chapter 5, a feasibility study is presented of detecting neurons in high-
content images of cell cultures from screening studies. The considered task is typically
the first step in a high-throughput analysis pipeline, where regions containing neurons
are detected in large image mosaics of low resolution but wide field-of-view, which
can subsequently be scanned in high resolution for further morphological analysis us-
ing methods such as presented in the previous chapters. The detection is performed
using supervised machine-learning methods trained on a very large number of image
features. The considered machine-learning methods include support vector machines,
random forests, k-nearest neighbors, and generalized linear model classifiers, and the
image features are extracted using the compound hierarchy of algorithms representing
morphology (CHARM) and the scale-invariant feature transform (SIFT). The exper-
imental results indicate that a random forests classifier using the right feature subset
ranks best but is not statistically significantly better than some of the support-vector
machine based classifiers. A pilot with deep-learning based artificial neural networks
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shows that the traditional classification methods are yet to be preferred given the
limited available data and annotations.





Chapter Two

Fuzzy-logic based detection and
characterization of junctions and

terminations in fluorescence
microscopy images of neurons

Digital reconstruction of neuronal cell morphology is an important step toward under-

standing the functionality of neuronal networks. Neurons are tree-like structures whose

description depends critically on the junctions and terminations, collectively called critical

points, making the correct localization and identification of these points a crucial task in the

reconstruction process. In this chapter, a fully automatic method for the integrated detec-

tion and characterization of both types of critical points in fluorescence microscopy images

of neurons is presented. In view of the majority of the current studies (currently available to

the authors), which are based on cultured neurons, the method was described and evaluated

for application to two-dimensional (2D) images. The method relies on directional filtering

and angular profile analysis to extract essential features about the main streamlines at any

location in an image, and employs fuzzy logic with carefully designed rules to reason about

the feature values in order to make well-informed decisions about the presence of a critical

point and its type. Experiments on simulated as well as real images of neurons demonstrate

the detection performance of the presented method. A comparison with the output of two

existing neuron reconstruction methods reveals that the method described in this chapter

achieves substantially higher detection rates and could provide beneficial information to the

reconstruction process.

Based upon: M. Radojević, I. Smal, E. Meijering, “Fuzzy-logic based detection and characterization
of junctions and terminations in fluorescence microscopy images of neurons”, Neuroinformatics, vol.
14, no. 2, pp.201-219, 2016.
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2.1 Introduction

The complexity and functionality of the brain depend critically on the morphology
and related interconnectivity of its neuronal cells [14, 75, 132]. To understand how a
healthy brain processes information and how this capacity is negatively a↵ected by
psychiatric and neurodegenerative diseases [7, 151,248] it is therefore very important
to study neuronal cell morphology. Advanced microscopy imaging techniques allow
high-sensitivity visualization of individual neurons and produce vast amounts of im-
age data, which are shifting the bottleneck in neuroscience from the imaging to the
data processing [115, 193, 232, 260] and call for a high level of automation. The first
processing step toward high-throughput quantitative morphological analysis of neu-
rons is their digital reconstruction from the image data. Many methods have been
developed for this in the past decades [76, 169] but the consensus of recent studies is
that there is still much room for improvement in both accuracy and computational
e�ciency [154,260].

A key aspect of any neuron reconstruction method is the detection and localization
of terminations and junctions of the dendritic (and axonal) tree, collectively called
“critical points” throughout this chapter (Fig. 2.1), which ultimately determine the
topology and faithfulness of the resulting digital representation. Roughly there are
two ways to extract these critical points in neuron reconstruction [5,22,169]. The most
often used approach is to start with segmentation or tracing of the elongated image
structures and then to infer the critical points, either afterwards or along the way,
by searching for attachments and endings in the resulting subsets [21, 55, 56, 70, 74,
122,182,277,291,293]. This approach depends critically on the accuracy of the initial
segmentation or tracing procedure, which usually is not designed to reliably capture
critical points in the first place and thus often produces very fragmented results,
requiring manual postprocessing to fix issues [71, 159, 193]. The reverse approach is
to first identify critical points in the images and then to use these as seed points
for tracing the elongated image structures. Critical points can be obtained either
by manual pinpointing, as in semiautomatic tracing methods [155, 157, 171, 182, 196,
228], or by fully automatic detection using sophisticated image filtering and pattern
recognition methods (discussed in the chapter sequel). The latter approach has barely
been explored for neuron reconstruction, but if reliable detectors can be designed, they
provide highly valuable information to the reconstruction process.

A novel method is presented - coined Neuron Pinpointer (NP) - for fully automatic
detection and characterisation of critical points in fluorescence microscopy images of
neurons. The method is described and evaluated for studies where single (cultured)
neurons are imaged in 2D although all aspects of the method can in principle be
extended to 3D. The method may also be useful for reconstruction approaches based
on 2D projections [311]. For computational e�ciency the method starts with an initial
data reduction step, based on local variation analysis, by which obvious background
image regions are excluded. In the remaining set of foreground regions the method
then explores the local neighborhood of each image pixel and calculates the response
to a set of directional filters. Next, an iterative optimization scheme is used for
robust peak selection in the resulting angular profile, and a set of corresponding
features relevant for the detection task is computed. The feature set is then further
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processed to make a nonlinear decision on the presence of a critical point and its
type (termination or junction) at each foreground image pixel. To conveniently deal
with ambiguity and uncertainty in the data, the decision-making is carried out by a
fuzzy-logic rule-based system using predefined rules specifically designed for this task.
The presented work aims to facilitate the task of automatic neuron reconstruction by
contributing a general scheme for extracting critical points that can serve as useful
input for any tracing algorithm.

This chapter is a considerably extended version of the conference report [213]. The
filtering algorithms and fuzzy-logic rules had been modified so as to be able to detect
both junction and termination points. In addition, the full details of the method are
presented here and an extensive evaluation based on both manually annotated real
neuron images and computer generated neuron images. To obtain the latter a new
computational approach is proposed based on publicly available expert manual trac-
ings. Chapter starts with a brief overview of related work on critical-point detection
(Section 2.2) and then the underlying concepts (Section 2.3), implementational details

a) b)

Figure 2.1: a) Fluorescence microscopy image of a neuron with manually indicated
junctions (red circles) and terminations (yellow circles). The radius of each annotated
critical-point region reflects the size of the underlying image structure. b) Example of
foreground selection. The original image of 560⇥780 pixels is divided into background
(green transparent mask) and foreground (gray-scale regions without mask) using

rd = 8 pixels and the 75th variation percentile as threshold. In this example, 25% of
the total number of pixels is selected for further processing.
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(Section 2.4), and experimental evaluation (Section 2.5) are presented, followed by a
summary of the conclusions that can be derived from the results (Section 2.6).

2.2 Related work

Detecting topologically critical points in images has been a long-standing problem
in many areas of computer vision. This section provides with a brief review of the
problem and proposed solutions in order to put presented work into context.

Examples of previous work include the design of filters to find image locations
where either three or more edges join (“junctions of edges”) [116, 142, 246] or three
or more lines join (“junctions of lines”) [72, 299]. In biomedical applications, the
predominant type of junction is the bifurcation, with occasional trifurcations, as seen
in blood vessel trees, bronchial trees, gland ductal trees, and also in dendritic trees
[127, 136]. Hence, research in this area has focused on finding image locations where
three (or more) elongated structures join [3, 4, 17, 26,28,42,185,259,266,308].

A common approach to find bifurcation points is to infer them from an ini-
tial processing step that aims to segment the elongated structures. However, the
way these structures are segmented may influence the subsequent critical-point infer-
ence. Popular image segmentation methods use intensity thresholding and/or mor-
phological processing, in particular skeletonization [4, 27, 74, 120, 124, 144, 200, 286],
but these typically produce very fragmented results. Popular methods to enhance
elongated image structures prior to segmentation include Hessian based analysis
[5, 22, 92, 180, 222, 269, 293, 300, 305], Laplacian-of-Gaussian filters [56], Gabor fil-
ters [17, 28], phase congruency analysis [184], and curvelet based image filtering ap-
proaches [181]. However, being tailored to elongated structures, such filters often
yield a less optimal response precisely at the bifurcation points, where the local im-
age structure is more complex than a single ridge.

Several concepts have been proposed to explicitly detect bifurcation points in
the images without relying on an initial segmentation of the axonal and dendritic
trees. Examples include the usage of circular statistics of phase information [185],
steerable wavelet based local symmetry detection [203], or combining eigen analysis
of the Hessian and correlation matrix [259]. The problem with existing methods
is that they often focus on only one particular type of critical point (for example
bifurcations but not terminations), or they use rather rigid geometrical models (for
example assuming symmetry), while in practice there are many degrees of freedom
[174]. Image filtering methods for bifurcation detection have also been combined with
supervised machine-learning based approaches such as support vector machines [269],
artificial neural networks [27], or with multiple classifiers using AdaBoost [308], but
these lack flexibility in that they require a training stage for each application.

Robust neuron tracing requires knowledge of not only the bifurcation points but
also the termination points. Since each type of critical point may vary considerably
in terms of geometry (orientation and diameter of the branches) and image intensity
(often related to the branch diameter), designing or training a dedicated filter for
each possible case is impractical, and a more integrated approach is highly desirable
for both detection and characterization of the di↵erent types of critical points. To
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the best of author knowledge, no generic methods currently exist for critical-point
detection in neuron images. The method proposed in this chapter aims to fill this gap
and to complement exploratory neuron reconstruction algorithms that initialize on a
set of seed points.

2.3 Proposed method

Proposed method for detection and characterization of critical points consists of three
steps: feature extraction (Section 2.3.1), fuzzy-logic based mapping (Section 2.3.2),
and, finally, critical-point determination (Section 2.3.3). Each step is described further
in detail.

2.3.1 Feature extraction

The aim of the feature extraction step is to compute a set of quantitative features of
the local image structure at each pixel position that helps to discriminate between
di↵erent types of critical points. Since the tree-like neuronal image structures typically
cover only a small portion of the image, unnecessary computations are avoided by first
performing a foreground selection step (Sec. 2.3.1.1), which discards image locations
that are very unlikely to contain neuronal structures and keeps only those regions that
are worthy of further examination. Next, the angular profile (Section 2.3.1.2) of each
foreground pixel is constructed, from which the quantitative features are computed.

2.3.1.1 Foreground selection

To determine whether a pixel location (x, y) in a given image I should be considered
as foreground or background, the local intensity variation ⇢(x, y) within a circular
neighborhood of radius rd centered at that location is analyzed. To avoid making
strong assumptions about the local intensity distribution, the di↵erence between the
95th and the 5th percentile of the intensities within the neighborhood is used as the
measure of variation:

⇢(x, y) = P95(Ixy)� P5(Ixy) (2.1)

Ixy =
�
I(m,n) | (m� x)2 + (n� y)2  r

2
d

 
(2.2)

x,m 2 [0,W � 1] and y, n 2 [0, H � 1] (2.3)

where W and H denote, respectively, the width and the height of I in pixels. The
value of ⇢ is relatively low within more or less homogeneous regions (background but
also the soma) but relatively high in regions containing neuronal branches. Con-
sequently, the histogram of ⇢ computed over the entire image contains two clusters
(representing foreground and background pixels), which can be separated using simple
percentile thresholding [79]. The percentile should be chosen such that background
pixels (true negatives) are removed as much as possible while at the same time the
foreground pixels (true positives) are retained as much as possible (in practice this
implies allowing for false positives). The practical experimentation proved that in this
particular application a percentile of around 75 is a safe threshold (Fig. 2.1b). Small
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Figure 2.2: Geometry involved in the computation of the angular profile. In e↵ect, the
value of p(x, y,↵, k,D) is the correlation of the image I(x, y) with the kernel G(m,n)
of size D ⇥D pixels, after rotating the kernel patch over angle ↵ and shifting it over
kD with respect to (x, y).

gaps in the foreground region are closed by morphological dilation. The resulting set
of foreground pixel locations is denoted by F . Similarly, such application requires the
parameter rd to be typically set to the diameter of the axonal and dendritic structures
observed in the image.

2.3.1.2 Angular profile analysis

For each selected foreground location, a local angular profile is computed and ana-
lyzed. The key task here is to assess the presence and properties of any curvilinear
image structures passing through the given location. To this end the image is corre-
lated with a set of oriented kernels distributed evenly over a range of angles around
that location [213]. The basic kernel used for this purpose is of size D ⇥ D pixels
and has a constant profile in one direction and a Gaussian profile in the orthogonal
direction (Fig. 2.2):

G(x, y) = e�x
2
/2�2

D /S (2.4)

where S is a normalization factor such that the sum of G(x, y) over all kernel pixels
is unity. The Gaussian is selected both because the cross-sectional profile of axons
and dendrites in such applications is observed to be approximately Gaussian-like and
because the Gaussian is a theoretically well-justified filter for regularization purposes.
The parameters D and �D determine the size and shape of the kernel profile and
should correspond to the expected branch diameter.

The local angular profile at any pixel location (x, y) in the given image I is com-
puted using the kernel as:

p(x, y,↵, k,D) =
X

m

X

n

I(xm,n, ym,n)G(m,n) (2.5)
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and the summation is performed over all (m,n) for which the kernel is defined. That is,
p(x, y,↵, k,D) is the correlation of the image with the kernel patch rotated over angle
↵ and shifted over a distance kD with respect to (x, y) in the direction corresponding
to that angle (Fig. 2.2). In practice, p is calculated for a discrete set of angles, ↵i =
i/(2⇡N↵), i = 0, . . . , N↵ � 1, where N↵ is automatically set such that the circle with
radius kD is sampled with pixel resolution. The parameter k is typically set slightly
larger than 0.5 so as to scan the neighborhood around the considered pixel (x, y). To
obtain the image intensity at non-integer transformed locations (xm,n, ym,n), linear
interpolation is used.

In contrast with previous works, which used di↵erential kernels for directional fil-
tering and profiling [43,299,305], this approach employs the matched kernel (Eq. 2.4),
which avoids noise amplification. Although applying a set of rotated kernels is com-
putationally more demanding than Hessian or steerable filtering based methods, it
provides more geometrical flexibility in matching the kernels with the structures of
interest while retaining excellent directional sensitivity. In presented framework, the
computational burden is drastically reduced by the foreground selection step, and
further reduction is possible since the filtering process is highly parallelizable.

The computed angular profile is further processed in order to extract several fea-
tures (Fig. 2.3) relevant for critical-point detection and characterization:

Peaks. At each foreground pixel location, method determines the number and di-
rection of the line-like image structures which pass through it. This is done by finding
the local maxima (“peaks”) in the angular profile at that location. Since the oriented
kernels act as low-pass filters, the profile is su�ciently smooth to extract the peaks
reliably using the iterative line searching algorithm [90]. The found peaks correspond
to angles ↵̂i, i = 1, . . . , N↵̂, in which directions the image intensities are the high-
est. Here N↵̂  4 to accommodate terminations, normal body points, and junctions
(bifurcations and crossovers).

Likelihood. For each ↵̂i, likelihood li 2 [0, 1] is calculated from the angular profile
according to:

li =
p(x, y, ↵̂i, k,D)� pmin

pmax � pmin
(2.7)

where pmin and pmax denote, respectively, the minimum and maximum of p(x, y,↵, k,D)
over ↵.

Energy. Next, the local grid ⇡i(x, y, ↵̂i, k,D) is considered for each ↵̂i (Fig. 2.3),
consisting of the transformed coordinates (xm,n, ym,n) corresponding to ↵ = ↵̂i (Eq. 2.6),
and a refined centerline point set �i (or “streamline”) is extracted over this grid by
finding for each n the local maximum over m:

�i = {(xm̂n,n, ym̂n,n)}n2 [�D/2,D/2] (2.8)

m̂n = argmax
m2 [�D/2,D/2]

I(xm,n, ym,n) (2.9)



22 2 Fuzzy-logic based detection of junctions and terminations

Figure 2.3: Flowchart of the feature extraction scheme. The example showcases a
bifurcation but the same scheme is used also for terminations. The scheme, which
starts with the angular profile p(x, y,↵, k,D) and is executed clockwise, is applied to
each pixel in the selected foreground regions and results in the set of features li, ui,
and ci, where i indexes the streamlines. See main text for details.

The degree of the streamline deviation from a straight line is quantified by estimating
its bending energy ui � 0 as:

ui =
1

�m

X

n

(m̂n�1 � 2m̂n + m̂n+1)
2 (2.10)

where �m is the pixel spacing in the direction of m and the summation extends over
all n for which the summand can be evaluated. This calculation is a discrete approx-
imation of the integral squared second-order derivative of the centerline function if it
were continuously defined.

Correlation. Given a streamline �i, the orthogonal direction is estimated at each
point in the set by averaging the orthogonal directions of the two neighboring stream-
line segments corresponding to that point (that is, from the point to the next point,
and from the point to the previous point). Using these direction estimates a refined lo-
cal grid ⇧i(x, y, ↵̂i, k,D) is sampled, consisting of image coordinates (x̃m,n, ỹm,n) rela-
tive to the streamline (Fig. 2.3), and compute a normalized cross-correlation [147,297]
score ci 2 [�1, 1] as:

ci =

P
m

P
n

⇥
I(x̃m,n, ỹm,n)� Ī

⇤⇥
G(m,n)� Ḡ

⇤
qP

m

P
n

⇥
I(x̃m,n, ỹm,n)� Ī

⇤2P
m

P
n

⇥
G(m,n)� Ḡ

⇤2 (2.11)

where, similar to the angular profile calculation (Eq. 2.5), the summations extend over
all (m,n) for which the kernel is defined, and Ī and Ḡ denote the mean of the image
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Figure 2.4: Scheme of a single input/output fuzzy-logic (FL) system. A scalar input
value s is converted to a vector s̃ containing the memberships of s for each of the
input fuzzy sets, resulting in a vector z̃ containing the memberships of z for each of
the output fuzzy sets.

intensities and of the kernel values, respectively. E↵ectively ci quantifies the degree
to which the template G matches a straightened version of the streamline. To cover
a range of possible scales (radii of the underlying image structures), the largest score
of a set of templates with standard deviations of the Gaussian profile model [259] is
taken, covering

�
1, . . . ,

⌅
D

2

⇧ 
set of values measured in pixels.

2.3.2 Fuzzy-logic based mapping

The feature values extracted at each foreground image location subsequently need to
be processed in order to assess the presence of a critical point and its type. Recognizing
that in practice everything is “a matter of degree” [301], and allowing for nonlinear
input-output mappings, the method is tailored to use fuzzy logic for this purpose.
Fuzzy logic has been successfully used in many areas of engineering [172] but, based
on a thorough search of the relevant literature - has not been explored for neuron
critical-point analysis. In this chapter, the basics of fuzzy logic (Section 2.3.2.1) are
briefly described followed by the description of the fuzzy-logic system tailored for
calculating critical-point maps of neuron images (Section 2.3.2.2).

2.3.2.1 Basics of fuzzy logic

In a fuzzy-logic system (Fig. 2.4), numerical inputs are first expressed in linguistic
terms (the fuzzification step), and are then processed based on predefined rules to
produce linguistic outputs (the inference step), which are finally turned back into
numerical values (the defuzzification step).

Fuzzification. Given an input scalar value s 2 R, the fuzzification step results in
a vector s̃ whose elements express the degree of membership of s to input fuzzy sets,
each corresponding to a linguistic term describing s. A fuzzy set is defined by a mem-
bership function µ : R! [0, 1] quantifying the degree to which s can be described by
the corresponding linguistic term. Commonly used membership functions are trape-
zoidal, Gaussian, triangular, and piecewise linear [172]. As an example, the linguistic
terms LOW and HIGH may be used to express the used quantities, representing the
subjective notions “low” and “high”, respectively. The degrees to which “s is low”
(which in this chapter will be denoted as s = LOW) and “s is high” (s = HIGH) are
given by membership values µLOW(s) and µHIGH(s), respectively. The output of the
fuzzification step thus becomes s̃ = [µLOW(s), µHIGH(s)]T .
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Inference. The input fuzzy set memberships are processed by the inference engine
to produce a fuzzy output based on rules expressing expert knowledge. The rules
can be either explicitly defined or implicitly learned by some training process, and
may express nonlinear input-output relationships and involve multiple inputs. In
engineering applications, the rules are commonly given as IF-THEN statements about
the input and output linguistic terms. For example, the output terms could be OFF,
NONE, and ON, indicating whether a certain property of interest is “o↵”, “none”
(expressing ambiguity), or “on”. A rule could then be:

Ri : IF (s1 = HIGH) ^ (s2 = LOW) THEN (z = OFF) (2.12)

where z 2 R is the variable over the output range. This is not a binary logical
statement, where the input and output conditions can be only true or false, but a
fuzzy logical statement, where the conditions are expressed in terms of memberships,
in this case µHIGH(s1), µLOW(s2), and µOFF(z). Input conditions are often combined
using the operators ^ (denoting fuzzy intersection) or _ (denoting fuzzy union), which
are commonly defined as, respectively, the minimum and maximum of the arguments
[172]. In the example, the IF-part of Ri (Eq. 2.12) would result in the following
intermediate value (degree of verity):

�i = min {µHIGH(s1), µLOW(s2)} (2.13)

This value is then used to constrain the fuzzy set corresponding to the output linguistic
term addressed by Ri, in this case OFF, resulting in the output fuzzy set:

⌥i(z) = min {µOFF(z), �i} (2.14)

In practice there may be many rules Ri, i = 1, . . . , NR, which are aggregated by the
inference engine to produce a single output fuzzy set ⌥. The common way to do
this [172] is by means of a weighted fuzzy union:

⌥(z) = max {w1⌥1(z), . . . , wNR⌥NR(z)} (2.15)

Although it is possible to assign a di↵erent weight to each rule by setting wi 2 [0, 1],
in the introduced applications this is not critical, and therefore wi = 1 is used for all
i.

Defuzzification. In the final step of the fuzzy-logic system, the fuzzy output ⌥ is
converted back to a scalar output value. Although there are many ways to do this, a
common choice is to calculate the centroid [172]:

ẑ =

R
z⌥(z)dzR
⌥(z)dz

(2.16)

With this value it is possible to finally calculate the vector of output fuzzy set mem-
berships: z̃ = [µOFF(ẑ), µNONE(ẑ), µON(ẑ)]T .
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Figure 2.5: Architecture of the proposed fuzzy-logic system: a) critical-point detec-
tion: a cascade of two fuzzy-logic modules (FL1 and FL2), where the first determines
the degree to which streamlines (up to four) are present at the image location under
consideration, and based on this information the second determines the degree to
which that location corresponds to the possible types of critical points, b) processing
the information of one streamline. Input feature values are fuzzified into linguistic
terms LOW and HIGH, which are translated by the first fuzzy-logic module (FL1)
into intermediate linguistic terms OFF, NONE, ON, which are finally translated by
the second fuzzy-logic module (FL2) into linguistic terms END, NONE, JUN.

2.3.2.2 Termination and junction mapping

To determine the presence and type of critical point at any foreground image loca-
tion, a cascade of two fuzzy-logic systems is used, representing two decision levels
(Fig. 2.5a). The first level takes as input vectors si = [li, ui, ci], i = 1, . . . , 4, which
contain the features for each of the streamlines extracted in the angular profile analysis
step at the image location under consideration (Section 2.3.1.2). For each streamline
(Fig. 2.5b), the features are fuzzified (µ) and processed by the first fuzzy-logic module
(FL1), which determines the degree to which the streamline indeed represents a line-
like image structure (ON), or not (OFF), or whether the image structure is ambiguous
(NONE). In cases where less than four streamlines were found by the angular profile
analysis step, the feature vectors of the nonexisting streamlines are set to 0. The
fuzzy output for all four streamlines together forms the input for the second decision
level, where another fuzzy-logic module (FL2) determines the degree to which the
image location corresponds to a junction (JUN), or a termination (END), or neither
of these (NONE).

The input streamline features, li, ui, ci, are expressed in linguistic terms LOW and
HIGH using membership functions µLOW and µHIGH defined for each type of feature.
In the application introduced in this chapter trapezoidal membership functions are
used, each having two inflection points, such that µLOW and µHIGH are each other’s
complement (Fig. 2.6). For example, the degrees to which li = LOW and li = HIGH,
are given by l

LOW
i

= µ
L

LOW(li) and l
HIGH
i

= µ
L

HIGH(li) = 1 � l
LOW
i

, respectively, and
because of this complementarity it is su�cient to use µL to refer to both membership
functions (Fig. 2.5) throughout the manuscript. Similarly, the membership degrees of
ui and ci are given by µ

U and µ
C , respectively. In summary, the following notations
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and definitions for the fuzzification step are used:

µ
L : li ! l̃i =

⇥
l
LOW
i

, l
HIGH
i

⇤T

µ
U : ui ! ũi =

⇥
u
LOW
i

, u
HIGH
i

⇤T

µ
C : ci ! c̃i =

⇥
c
LOW
i

, c
HIGH
i

⇤T
(2.17)

and the lower and higher inflection points of µL are denoted by LLOW and LHIGH,
and similarly ULOW and UHIGH for µU , and CLOW and CHIGH for µC (Fig. 2.6).

Taken together, the input to FL1 is the matrix of memberships s̃i = [̃li, ũi, c̃i],
and the output is the vector õi of memberships to the linguistic terms OFF, NONE,
ON:

FL1 : s̃i ! õi =
⇥
o
OFF
i

, o
NONE
i

, o
ON
i

⇤T
(2.18)

To calculate these memberships, scalar variable o is introduced, where o = 0 cor-
responds to OFF, o = 1 to NONE, and o = 2 to ON. Also, Gaussian membership
functions µO

OFF, µ
O

NONE and µ
O

ON are defined, centered around 0, 1, and 2, respectively
(Fig. 2.7), and with fixed standard deviation 0.4 so that they sum to about 1 in the
interval [0, 2]. The rules used by FL1 to associate the input terms LOW and HIGH
to the output terms OFF, NONE, and ON, are given in Table 2.1. They are based on
the heuristic assumption that a line-like image structure exists (ON) if the evidence
represented by all three features support it (HIGH). By contrast, if the likelihood is
LOW and at least one other feature is also LOW, this indicates that no such structure
exists (OFF). In all remaining cases, some structure may exist, but it is not line-like
(NONE). As an example, rule R8 (Table 2.1) is given by:

R8 : IF (l = HIGH) ^ (u = HIGH) ^ (c = HIGH)THEN (o = ON) (2.19)

which results in the verity value:

�8 = min
�
µ
L

HIGH(l), µ
U

HIGH(u), µ
C

HIGH(c)
 

(2.20)

and the output fuzzy set:

⌥8(o) = min
�
µ
O

ON(o), �8
 

(2.21)

All the rules are resolved and combined as:

⌥(o) = max {⌥1(o), . . . ,⌥8(o)} (2.22)

and centroid defuzzification then results in a scalar output value ô. This procedure is
repeated for each streamline, yielding ôi, i = 1, . . . , 4, from which the output of each
FL1 (Eq. 2.18) is calculated using the membership functions:

õi =
⇥
µ
O

OFF(ôi), µ
O

NONE(ôi), µ
O

ON(ôi)
⇤T

(2.23)

Moving on to the next level, the input to FL2 is the matrix of memberships
õ = [õ1, õ2, õ3, õ4], and the output is the vector z̃ of memberships to the linguistic
terms END (termination), NONE (no critical point), JUN (junction):

FL2 : õ! z̃ =
⇥
z
END

, z
NONE

, z
JUN

⇤T
(2.24)
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Figure 2.6: Input membership functions used in the fuzzification step for FL1. Ex-
ample LOW and HIGH membership values are shown (right column) for input values
(dashed vertical lines in the plots on the left) li = 0.35 (top row), ui = 10 (middle
row), and ci = 0.85 (bottom row). The inflection points of the membership functions
are, respectively, LLOW = 0.05 and LHIGH = 0.4 for µL, UHIGH = 5 and ULOW = 20
for µ

U , and CLOW = 0.5 and CHIGH = 0.95 for µ
C . Notice that features ui (the

centerline bending energies of the streamlines) are reinterpreted here to express the
degree of smoothness (hence the inverted membership functions as compared to the
other two).
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Figure 2.7: Output membership functions used in module FL1. Example output
fuzzy sets ⌥i corresponding to rules Ri from Table 2.1 are shown as the textured
areas. Value ô (left panel) represents the centroid of the aggregated output fuzzy
sets. The resulting output membership values (right panel) serve as input for module
FL2.

Table 2.1: The set of rules employed by FL1.

Ri l u c o

1 LOW LOW LOW OFF
2 LOW LOW HIGH OFF
3 LOW HIGH LOW OFF
4 LOW HIGH HIGH NONE
5 HIGH LOW LOW NONE
6 HIGH LOW HIGH NONE
7 HIGH HIGH LOW NONE
8 HIGH HIGH HIGH ON

To calculate these memberships, scalar variable z is introduced, where z = 1 corre-
sponds to END, z = 2 to NONE, and z = 3 to JUN. Corresponding Gaussian mem-
bership functions µ

Z

END, µ
Z

NONE, and µ
Z

JUN are defined. They are centered around
1, 2, and 3, respectively, and with fixed standard deviation 0.4 as before (Fig. 2.8).
The rules used by FL2 to associate the input terms OFF, NONE, ON to the output
terms END, NONE, JUN are given in Table 2.2. They are based on the heuristic
assumption that there is a termination (END) if a single streamline is confirmed to
correspond to a line-like image structure (ON) and the other three are confirmed to
not correspond to such a structure (OFF). Conversely, if at least three are ON, there
must be a junction at that location. Finally, if two are ON and two are OFF, or if at
least two streamlines are ambiguous (NONE), it is assumed that there is no critical
point. Similar to FL1, all the rules of FL2 are evaluated and their results combined
as:

⌥(z) = max {⌥1(z), . . . ,⌥22(z)} (2.25)

which, after centroid defuzzification, results in a scalar output value ẑ, from which
the output of FL2 (Eq. 2.24) is calculated using the membership functions:

z̃ =
⇥
µ
Z

END(ẑ), µ
Z

NONE(ẑ), µ
Z

JUN(ẑ)
⇤T

(2.26)



2.3 Proposed method 29

Table 2.2: The set of rules employed by FL2. Empty entries indicate “don’t care”
(could be OFF, NONE, or ON).

Ri o1 o2 o3 o4 z

1 OFF OFF OFF OFF NONE
2 OFF OFF OFF ON END
3 OFF OFF ON OFF END
4 OFF OFF ON ON NONE
5 OFF ON OFF OFF END
6 OFF ON OFF ON NONE
7 OFF ON ON OFF NONE
8 OFF ON ON ON JUN
9 ON OFF OFF OFF END
10 ON OFF OFF ON NONE
11 ON OFF ON OFF NONE
12 ON OFF ON ON JUN
13 ON ON OFF OFF NONE
14 ON ON OFF ON JUN
15 ON ON ON OFF JUN
16 ON ON ON ON JUN
17 NONE NONE NONE
18 NONE NONE NONE
19 NONE NONE NONE
20 NONE NONE NONE
21 NONE NONE NONE
22 NONE NONE NONE

The proposed fuzzy-logic system is applied to each foreground pixel location (x, y) 2 F

(Section 2.3.1.1) so that all memberships introduced above may be indexed by (x, y).
Based on this, the following two maps are calculated:

IEND(x, y) =

⇢
z
END(x, y) if (x, y) 2 F

0 otherwise
(2.27)

IJUN(x, y) =

⇢
z
JUN(x, y) if (x, y) 2 F

0 otherwise
(2.28)

which indicate the degree to which any pixel (x, y) belongs to a termination or a
junction, respectively.

2.3.3 Critical-point determination

The ultimate aim of the introduced method is to provide a list of critical points in
the neuron image, with each point fully characterized in terms of type, location, size,
and main branch direction(s). Since each critical point of a neuronal tree typically
covers multiple neighboring pixels in the image, giving rise to a high value at the
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Figure 2.8: Output membership functions used in module FL2. Example output fuzzy
sets ⌥i corresponding to rules Ri from Table 2.2 are shown as the textured areas.
Value ẑ (left panel) represents the centroid of the aggregated output fuzzy sets. The
resulting output membership values (right panel) indicate the degree to which there
may be a termination (END), junction (JUN), or neither of these (NONE) at the
image pixel location under consideration.

corresponding pixels in the maps IEND and IJUN, the final task is to segment the
maps and to aggregate the information within each segmented region. Due to noise,
labeling imperfections, and structural ambiguities in the original image, the values
of neighboring pixels in the maps may vary considerably, and direct thresholding
usually does not give satisfactory results. To improve the robustness the real-valued
scores in the maps are first regularized by means of local-average filtering with a
radius of 3-5 pixels. Next, max-entropy based automatic thresholding [133] is applied
to segment the maps, as in contrast with many other thresholding methods it was
found to perform well in separating the large but relatively flat (low information)
background regions from the much smaller but more fluctuating (high information)
regions of interest. The resulting binary images are further processed using a standard
connected components algorithm [252] to identify the critical-point regions.

Each critical region consists of a set of connected pixels xp = (xp, yp), p =
1, . . . , Np, where Np denotes the number of pixels in the region. From these, the

rC

v̂3
v̂2

v̂1

(xC , yC)
rC

(xC , yC)

(xp, yp)

wp

t ap,i

ep,i

Figure 2.9: Critical-point determination. A critical point is characterized by its type,
centroid location (xC , yC), radius rC , and its main branch directions v̂i (left panel,
in this case a bifurcation), aggregated from the pixels (xp, yp) in the corresponding
critical region (right panel).
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representative critical-point location xC = (xC , yC) is calculated as:

xC =
1

Np

NpX

p=1

xp (2.29)

while the critical-point size is represented by the radius of the minimum circle sur-
rounding the region:

rC = max
p

{||wp||} (2.30)

where wp = xp � xC (Fig. 2.9). To obtain regularized estimates of the main branch
directions v̂i for the critical point, the directions are aggregated corresponding to the
angular profile peaks ↵̂i (Section 2.3.1.2) of all the xp in the region as follows. For
each xp, N↵̂  4 angular profile peak direction vectors ap,i = [cos ↵̂i(xp), sin ↵̂i(xp)]T

are found. Each of these vectors defines a line a(t) = xp + tap,i parameterized by
t 2 R. The projection of this line onto the circle ||x � xC ||2 = r

2
C

is established by
substituting x = a(t) and solving for t. From this, the contributing unit vector is
calculated (Fig. 2.9):

ep,i =
1

rC
(wp + tap,i) (2.31)

which points from xC to the intersection point. This is done for all p = 1, . . . , Np in
the region and i = 1, . . . , N↵̂ for each p, resulting in the set of vectors {ep,i}. Next, a
recursive mean-shift clustering algorithm [52] is applied to {ep,i}, which converges to
a set {v̂i}, where the cluster vectors v̂i, i = 1, . . . , L, represent the branches. For a
critical region in IEND, only one main branch direction is needed, simply taken to be
the direction v̂1 to which the largest number of ep,i were shifted. For a critical region
in IJUN, the v̂i (at least three) are taken as the main branch directions to which the
largest number of ep,i were shifted. These calculations are performed for all critical
regions.

2.4 Implementational details

The method was implemented in the Java programming language as a plugin for
the image processing and analysis tool ImageJ [1, 229]. Since the feature extraction
step (Section 2.3.1), in particular the matched filtering for angular profile analysis,
is quite computationally demanding, parallelization is applied in multiple ways to
reduce the running time to acceptable levels (on the order of minutes on a regular
PC). Specifically, the directional filtering was split between CPU cores, each taking
care of a subset of the directions (depending on the number of available cores). After
this, the angular profile analysis and calculation of the features was also split, with
each core processing a subset of the foreground image locations. This was su�cient
to run the experiments. Further improvement in running time (down to real-time if
needed) could be achieved by mass parallelization using GPUs (graphical processing
units) instead of CPUs.

Essential parameters that need to be set by the user are the scale parameters k

and D (Section 2.3.1.2) and the inflection points LLOW, LHIGH, ULOW, UHIGH, CLOW,
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Figure 2.10: Examples of simulated triplet images and detection results. Each triplet
consists of three branches with di↵erent diameters which join at one end to form
a bifurcation point and with the other ends being termination points. Images were
generated at SNR = 2, 3, 4, 5 (left to right panel). The detection results with presented
method are indicated as red circles (bifurcation points) and yellow circles (termination
points), where the radius of each circle reflects the size of the critical region found by
the method.

and CHIGH of the input membership functions used by fuzzy-logic module FL1 (Sec-
tion 2.3.2.2). In the showcased application, parameter D is set to the expected neuron
diameter in a given set of images while k = 0.7 was kept fixed. The L inflection points
are always in the range [0, 1] since the corresponding feature (likelihood) is normal-
ized. Based on ample experience with many data sets, LLOW is typically set close to
0 and LHIGH around 0.5 (Fig. 2.6). By contrast, the inflection points U correspond
to a feature (centerline bending energy) that is not normalized and may vary widely
from 0 to any positive value. To obtain sensible values for these, the histogram of all
calculated energy values in the image is used. Parameter ULOW is set to the thresh-
old computed by the well-known triangle algorithm, while typically UHIGH � ULOW.
It is useful to note that the membership functions defined by these parameters are
inverted (Fig. 2.6) such that the energy becomes a measure of smoothness. Finally,
the C inflection points correspond again to a feature (correlation) with a fixed output
range [�1, 1]. In practical applications they are usually set to CLOW 2 [0.1, 0.5] and
CHIGH = 0.95 (Fig. 2.6).

All other aspects of the method that could be considered as user parameters either
follow directly from these essential parameters or are fixed to the standard values
mentioned in the text. For example, the radius rd of the circular neighborhood in the
foreground selection step (Section 2.3.1.1) can be set equal to D, and the standard
deviation �D of the Gaussian profile (Section 2.3.1.2) can be set to D/6 to get a
representative shape. Also, the output membership functions of FL1 (input to FL2)
as well as the output membership functions of FL2 are Gaussians with fixed levels
and standard deviation (Section 2.3.2.2), as they are not essentially influencing the
performance of the algorithm.
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Figure 2.11: Performance of the method in detecting terminations and junctions in
simulated images of triplets. The values of FEND and FJUN are shown (left panel)
for the various branch diameter ratios dmax/dmin at SNR = 4. The distribution of
FBOTH values is shown as a box plot (right panel) for the various SNR levels.

2.5 Experimental results

To evaluate the performance of Neuron Pinpointer method in correctly detecting
and classifying neuronal critical points, experiments with simulated images (using
the ground truth available from the simulation) as well as with real fluorescence mi-
croscopy images (using manual annotation as the gold standard) have been performed.
After outlining the performance measures (Section 2.5.1), the results of the evaluation
on simulated images are presented, including the synthetic triplets (Section 2.5.2) and
synthetic neurons (Section 2.5.3), and on real neuron images (Section 2.5.4). Finally,
the results of a comparison of the method with two other methods (Section 2.5.5) is
showcased.

2.5.1 Performance measures

Performance was quantified by counting the correct and incorrect hits and the misses
of the detection with respect to the reference data. More specifically, the true-positive
(TP), false-positive (FP), and the false-negative (FN) critical-point detections had
been counted, and used to calculate the recall R = TP/(TP + FN) and precision
P = TP/(TP + FP). Both R and P take on values in the range from 0 (meaning
total failure) to 1 (meaning flawless detection). They are commonly combined in
the F-measure [201], defined as the harmonic mean of the two: F = 2RP/(R + P).
The F-measure was computed separately for each type of critical points considered
in this paper, yielding FEND for terminations and FJUN for junctions. As a mea-
sure of overall performance, the harmonic mean of the two F-measures: FBOTH =
2FEND FJUN/(FEND + FJUN) is also computed.

2.5.2 Evaluation on simulated triplet images

Before considering full neuron imagery the performance of the method was first evalu-
ated at detecting terminations and junctions in a very basic configuration as a function
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of image quality. To this end, a triplet model was used, consisting of a single junction
modeling a bifurcation, having three branches with arbitrary orientations (angular
intervals) and diameters (Fig. 2.10). Orientations were randomly sampled from a
uniform distribution in the range [0, 2⇡] while prohibiting branch overlap. Since in
principle the directional filtering step (Section 2.3.1.2) uses a fixed kernel size D, the
intent was to investigate the detection robustness for varying ratios dmax/dmin between
the maximum and the minimum branch diameter in a triplet. For such experiment,
1, 0.33, 2, 2.5, 3 ratios were considered by taking normalized diameter configurations
(d1, d2, d3) = (0.33,0.33,0.33), (0.3,0.3, 0.4), (0.2, 0.4,0.4), (0.2,0.3,0.5), (0.2,0.2,0.6),
where in each case the actual smallest diameter was set to 3 pixels (the resolution
limit) and the other diameters were scaled accordingly. A set of images was simulated
for each configuration containing 1, 000 well-separated triplets for signal-to-noise ra-
tio levels SNR = 2, 3, 4, 5 (see cropped examples in Fig. 2.10). These levels are
chosen knowing that SNR = 4 is a critical level in other detection problems [53,250].
Poisson noise was used in simulating fluorescence microscopy imaging of the triplets.
The obtained results of this experiment (Fig. 2.11) lead to the conclusion that the
method is fairly robust for diameter ratios dmax/dmin  2 1

2 and an image quality of
SNR � 4. Based on the detection rates, it is also possible to draw a conclusuion that
the presented method is somewhat better in detecting terminations than detecting
junctions in synthetic images. Example detection results for dmax/dmin  2 for the
considered SNR levels are shown in Fig. 2.10.

2.5.3 Evaluation on simulated neuron images

To evaluate the method on more complex images, with the known ground truth,
the imaging of complete neurons was simulated. Although there are various ways
this could be done [136,277], the existing expert reconstructions from the NeuroMor-
pho.Org database [15] were used. A total of 30 reconstructions from di↵erent neuron
types were downloaded as SWC files [44], in which the reconstructions are represented
as a sequence of connected center-point locations in 3D with corresponding radii in
micrometers. Fluorescence microscopy images were generated from these reconstruc-
tions in 2D by using a Gaussian point-spread function model and Poisson noise to
emulate di↵raction-limited optics and photon statistics. For each reconstruction, the
images of SNR = 2, 3, 4, 5 (Fig. 2.12) were generated. The simulated images of neu-
rons are obtained this way, each with the exactly known location of the termination
and junction point, extrapolated from the source SWC file. The evaluation results
(Fig. 2.13) confirm the conclusion from the experiments on triplets that the method
performs well for SNR � 4 and is somewhat better in detecting terminations than de-
tecting junctions. For SNR = 4 the performance for junction detection is FJUN ⇡ 0.85
while for termination detection FEND ⇡ 0.95. The higher performance for termination
detection may be explained by the fact that the underlying image structure is usually
less ambiguous (a single line-like structure surrounded by darker background) than
in the case of junctions (multiple line-like structures that are possibly very close to
each other). Example detection results are shown in Fig. 2.14.
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Figure 2.12: Examples of simulated neuron images based on expert reconstructions
from the NeuroMorpho.Org database. The images show a wide range of morphologies
(one type per row) and image qualities of SNR = 2, 3, 4, 5 (from left to right per
row).
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Figure 2.13: Performance of the method in detecting terminations and junctions in 30
simulated images of neurons. The distributions of the FEND, FJUN, and FBOTH values
are shown as box plots for SNR = 4 (left panel) and in addition the distribution of
FBOTH is shown for SNR = 2, 3, 4, 5 (right panel).

2.5.4 Evaluation on real neuron images

As the ultimate test case, the method was also evaluated on real fluorescence mi-
croscopy images of neurons from a published study [255]. A total of 30 representative
images were taken and expert manual annotations of the critical points were obtained
to serve as the gold standard in this experiment. Naturally, real images are generally
more challenging than simulated images, as they contain more ambiguities due to
labeling and imaging imperfections, and thus the lower performance was expected.
Since in this case there is no control over the SNR in the images, the detection results
are reported for all images together. The evaluation results (Fig. 2.15) indicate that
the median performance in detecting critical points is FJUN = 0.81 for junctions and
FEND = 0.73 for terminations while FBOTH = 0.76. As expected, these numbers are
lower than those of the simulated neuron images. Surprisingly, the junction detection
performance with the real images is better than the termination detection which had
not been the case with the synthetic neurons. A possible explanation for this could be
that in the simulated images a constant intensity was used for the neuron branches,
as a result of which terminations are as bright as junctions but much less ambiguous
due to a clear background, while in the real images the terminations are usually much
less clear due to labeling imperfections and the fact that the branch tips tend to be
thinner and thus less bright than the junctions. This illustrates the limitations of the
simulations. Example detection results are shown in the Fig. 2.16.

2.5.5 Comparison with other methods

Finally the performance comparison of the Neuron Pinpointer method against other
methods is conduct. In lack of availability of other methods explicitly designed to de-
tect and classify critical points in neuron images before reconstruction, two existing
software tools relevant in this context were considered and their implicit detection
capabilities compared with the presented explicit method. If NP indicates better
performance, this would indicate that the existing methods may be improved by ex-
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Figure 2.14: Example detections for simulated neuron images at SNR = 4. The
showcased images are contrast enhanced and show the detected terminations (yellow
circles) and junctions (red circles) as overlays with fixed radius for better visibility.
The value of FBOTH in these examples is (a) 0.69, (b) 0.85, (c) 0.85, (d) 0.77, (e) 0.75,
(f) 0.68, (g) 0.86.
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Figure 2.15: Performance of the method in detecting terminations and junctions in
30 real fluorescence microscopy images of neurons. The distributions of the FEND,
FJUN, and FBOTH values for all images together are shown as box plots.

ploiting the output of the method. The first tool, AnalyzeSkeleton (AS)1 [9], is an
ImageJ plugin for finding and counting all end-points and junctions in a skeleton
image. To obtain skeleton images of the neuron images used for this study, the re-
lated skeletonization method2 inspired by an advanced thinning algorithm [146] was
used. The input for the latter is a binary image obtained by segmentation based on
smoothing (to reduce noise) and thresholding. A range of smoothing scales is con-
sidered in the experiments and manually selected thresholds as well as automatically
determined thresholds using the following algorithms from ImageJ: Intermodes, Li,
MaxEntropy, RenyiEntropy, Moments, Otsu, Triangle, and Yen. All of these were
tried in combination with the AS method and the highest F-scores were used.

The second tool, All-Path-Prunning (APP2) [291], is a plugin for Vaa3D3 [189,
196]. It was not designed specifically for a priori critical-point detection but for fully
automatic neuron reconstruction. Nevertheless, in producing a tree representation of
a neuron, the reconstruction algorithm must somehow identify the branch end-points
and junctions, and for aforementioned experiments it is straightforward to retrieve
them from the SWC output files. In principle, any neuron reconstruction method is
also implicitly a critical-point detection method, and its performance could be quan-
tified by comparing the output tree nodes with the reference data. The interesting
question is whether an explicit detector such as NP outperforms the implicit detection
carried out in a tool such as APP2. The user parameters of the tool were manually
adjusted to get optimal performance in presented experiments.

A comparison of the F-scores of NP, AS, and APP2 for the 30 real neuron images
used throughout the experiments is presented in Fig. 2.17. The plots indicate that the
detection rates of the NP method are substantially higher than those of AS and APP2.
The di↵erence is especially noticeable for the termination points. More specifically,
the di↵erence between FEND and FJUN is relatively small for NP, but much larger for
both AS and APP2. This indicates a clear advantage of using presented explicit and
integrated approach for detecting critical points, as accurate neuron reconstruction

1available from http://fiji.sc/AnalyzeSkeleton
2http://fiji.sc/Skeletonize3D
3available from http://www.vaa3d.org/
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Figure 2.16: Example detections for four real neuron images. The detected termi-
nations (yellow circles) and junctions (red circles) are shown as overlays with fixed
radius for better visibility. The value of FBOTH in these examples is (a) 0.82, (b) 0.78,
(c) 0.68, (d) 0.65.
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Figure 2.17: Critical-point detection performance of the introduced method (NP)
compared to two other methods (AS and APP2). The median values of FJUN (left
plot) are 0.81 (NP), 0.65 (AS), and 0.47 (APP2). The median values of FEND (middle
plot) are 0.73 (NP), 0.28 (AS), and 0.21 (APP2). Finally, the median values of FBOTH

(right plot) are 0.76 (NP), 0.35 (AS), and 0.29 (APP2).

requires accurate detection of both junctions and terminations. However, with the
current implementation, this advantage does come at a cost: timing of the three
methods on a standard PC (with Intel Core i7-2630QM 2GHz CPU and 6 GB total
RAM) revealed that with the used images of 105 to 106 pixels in size, NP took about 40
seconds per image on average, while both AS and APP2 took only about 1.5 seconds
per image. Fortunately, since virtually all the computation time of the presented
method is spent in the directional filtering step, which is highly parallelizable, this
cost can be reduced to any desired level by employing many-core hardware (such as
GPUs).

2.6 Conclusions

A novel method for solving the important problem of detecting and characterizing
critical points in the tree-like structures in neuron microscopy images is presented.
Based on directional filtering and feature extraction in combination with a two-stage
fuzzy-logic based reasoning system, it provides an integrated framework for the simul-
taneous identification of both terminations and junctions. From the experimentation
on simulated as well as real fluorescence microscopy images, it is possible to con-
clude that the method achieves substantially higher detection rates than the ones
that can be inferred from existing neuron reconstruction methods. This is true for
both junction points and termination points, but especially for the latter, which are
of key importance in obtaining faithful reconstructions. Altogether, the obtained re-
sults suggest that NP may provide important clues to improve the performance of
reconstruction methods. Actual integration of the detection method with existing
tracing methods is a potential future direction, as the ultimate aim is further uti-
lization, especially from the context of the neuron tracing, as well as adjusting the
processing to the 3D imagery. Although the main focus in this work has been the
neuron analysis, introduced method may be potentially useful for other applications
involving tree-like image structures, such as blood vessel or bronchial tree analysis.
Such applications, however, would require further research. For this purpose it may
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be helpful to increase the robustness of the detection method to larger branch di-
ameter ratios than the ones tested in this paper. This could be done, for example,
by using multiscale filtering approaches, or by selective morphological thinning (or
thickening). The software implementation of the presented method is available as an
ImageJ plugin 4.

4available from https://bitbucket.org/miroslavradojevic/npinpoint





Chapter Three

Automated neuron tracing using
probability hypothesis density

filtering

The functionality of neurons and their role in neuronal networks is tightly connected to

the cell morphology. A fundamental problem in many neurobiological studies aiming

to unravel this connection is the digital reconstruction of neuronal cell morphology from

microscopic image data. Many methods have been developed for this, but they are far from

perfect, and better methods are needed. In this chapter, a new method for tracing neuron

centerlines needed for full reconstruction is presented. The method uses a fundamentally

di↵erent approach than previous methods by considering neuron tracing as a Bayesian multi-

object tracking problem. The problem is solved using probability hypothesis density filtering.

Results of experiments on 2D and 3D fluorescence microscopy image datasets of real neurons

indicate the proposed method performs comparably or even better than the state of the art.

Based upon: M. Radojević, E. Meijering, “Automated neuron tracing using probability hypothesis
density filtering”, Bioinformatics, vol. 33, no. 7, pp.1073-1080, 2017.
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3.1 Introduction

Accurate reconstruction of the tree-like structure of neuronal cells from optical mi-
croscopy images is a crucial step in automating the analysis of single neuron mor-
phology or the connectivity of neuronal networks [76, 169, 190]. Microscopic images
provide detailed information about the geometrical and topological properties of the
neuronal arbors. Extracting and representing this information in a faithful and con-
venient digital format is key to many studies [14, 15, 115, 158, 232, 260], as digital
reconstructions enable neurobiologists to use computational approaches in address-
ing open issues in brain research, such as the relation between neuron structure and
function, and the e↵ects of neurodegenerative disease processes and drug compounds
on neuron development and connectivity.

Existing approaches to tracing neurons in images can be broadly divided into
global and local approaches. Global approaches consider the problem from the whole-
image perspective and typically involve global image segmentation [22, 66, 285] or
global optimization strategies [269, 291]. Local approaches, on the other hand, use
local image exploration strategies starting from seed points [55, 192, 295] to find seg-
ments of the neuronal tree, which are then merged into a full tree representation.
Both approaches have advantages and disadvantages and they are often combined to
profit from their complementarity [131,307].

A wide variety of computational concepts have been proposed in developing au-
tomated neuron tracing methods, whether global or local [2]. These include active
contours [41, 160, 283], tubular models [222], principal curves [21, 205], perceptual
grouping [181], path pruning [192, 291], critical point detection [5, 212], voxel scoop-
ing [217], dynamic and integer programming [268, 305], active learning [96], graph
optimization [56, 269], tubularity flow field segmentation [179], marked point pro-
cesses [23], iterative back-tracking [153], and more. A key characteristic relevant to
the methodology presented in this chapter is that the vast majority of them are deter-
ministic by nature. That is, they utilize models and algorithms that always assume
or pass through the exact same sequence of states. While this behavior may seem
virtuous and practically convenient, it is nonetheless not very realistic and not nec-
essarily advantageous, for several reasons. For starters, expert human annotators,
which are still considered to be the gold standard in evaluating methods, do not oper-
ate deterministically: their output will be (slightly) di↵erent every time they repeat
a task. Also, any deterministic model is typically a (gross) simplification of reality,
and consequently lacks flexibility in dealing with data variability. Finally, since every
run of a deterministic algorithm will yield exactly the same output, it is not possible
to accumulate evidence from multiple iterations.

In this chapter, a new method for neuron tracing in optical microscopy images
is proposed that operates probabilistically rather than deterministically. Focusing
on delineating the branch centerlines, it utilizes a Bayesian approach to blend two
sources of information: the model (based on prior knowledge) and the measurements
(from the image data). The main novelty is that it combines the problems of neuron
segment detection and linking into one framework by performing simultaneous multi-
object tracking. Traditional multi-object (also referred to as multi-target) tracking
techniques [164,257] typically assume the number of objects to be known and/or they
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explicitly associate measurements with objects which are then Bayesian filtered indi-
vidually [19]. In arbor tracing, the number of objects (neuron segments) is unknown
a priori, therefore a di↵erent approach is used, based on filtering the so-called proba-
bility hypothesis density (PHD) function [163]. PHD filtering has gained popularity
in recent years as a robust approach to tracking, since it is able to compensate for
missing detections and to remove noise and clutter, while reducing the computational
complexity from exponential to linear as the number of objects grows. Applications
include radar and sonar tracking [57,265], video surveillance [162,284], and even mo-
tion tracking in microscopy [226, 288], but had not been explored for neuron tracing
yet. Moreover, presented application di↵ers fundamentally from other works in the
sense that the filtering is applied in space rather than in time. The proposed method
is evaluated on a variety of real image data (both 2D and 3D) taking expert man-
ual annotations as the gold standard. Its performance is also compared with several
state-of-the-art tools for neuron tracing [56,205,291].

3.2 Methods

3.2.1 Multi-object Bayesian filtering

Single-object tracking is considered as a Bayesian inference problem [20, 223]. The
key idea is to estimate the posterior probability density function (pdf) fk|k(xk|z1:k),
where xk denotes the object state at iteration k, and z1:k the sequence of observations
from iterations 1 to k inclusive. Estimation is accomplished by sequentially applying
prior knowledge to predict the state in the next iteration and updating this estimate
with available observations. Similarly, multi-object tracking can be formulated as
the problem of updating predictions of the multi-object state Xk = {xk,1, . . . , xk,Nk}
with multi-object observations Zk = {zk,1, . . . , zk,Mk}, where Nk and Mk denote the
number of objects and observations at iteration k, respectively. The prediction is thus
formulated as:

fk|k�1(Xk|Z1:k�1) =

Z
⇧k|k�1(Xk|Xk�1)fk�1|k�1(Xk�1|Z1:k�1)�Xk�1 (3.1)

along with the update:

fk|k(Xk|Z1:k) =
#k(Zk|Xk)fk|k�1(Xk|Z1:k�1)R
#k(Zk|X)fk|k�1(X|Z1:k�1)�X

(3.2)

where ⇧k|k�1(Xk|Xk�1) denotes the multi-object state transition probability and
#k(Zk|Xk) the multi-object likelihood. Filtering the multi-object posterior fk|k(Xk|Z1:k)
su↵ers from serious practical obstacles, as the multi-object state can be very high-
dimensional and hard to sample and integrate e�ciently. Moreover, it is necessary
to take into account changes in object numbers, which adds an often intractable
combinatorial burden. Thus more feasible solutions are needed.
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Figure 3.1: Method overview. Each multi-object filtering round is initialized with N0

seeds. If the seed pool is not exhausted by the end of the current round, a new round
is started, and this is repeated until all seeds have been processed.

3.2.2 Probability hypothesis density filtering

To overcome the di�culties of direct multi-object Bayesian filtering, presented solu-
tion proposes instead to filter the first-order statistical moment of the multi-object
posterior fk|k(Xk|Z1:k), computed as

Dk|k(x|Z1:k) =

Z
�X(x)fk|k(X|Z1:k)�X (3.3)

where �X denotes the sum of Dirac deltas at elements of X. For the sake of notational
convenience the left-hand side of (3.3) is abbreviated to Dk|k(x) in the sequel. This
function, known as the probability hypothesis density (PHD) [163], is a non-negative
function whose integral

R
Dk|k(x)dx yields the expected number of objects ⌫k 2 R.

PHD filtering allows for joint detection and estimation of an unknown and varying
number of objects and their individual states using the Bayesian prediction and update
framework. Here, multi-object state Xk and observation Zk are modeled as so-called
random finite sets RFS, with randomness in set size as well as set element values
[19], accommodating phenomena such as object initiation, clutter, and partitioning
(spawning).

Formally stated, PHD filtering proceeds by iterating the sequence consisting of
the prediction, formulated as

Dk|k�1(x) = �k|k�1(x) + h�k|k�1(x|·) + pS,k|k�1(·)⇡k|k�1(x|·), Dk�1|k�1(·)i (3.4)

followed by the update, formulated as

Dk|k(x) = (1� pD,k(x))Dk|k�1(x) +
X

z2Zk

pD,k(x)gk(z|x)Dk|k�1(x)

Ck(z) + hpD,k(·)gk(z|·), Dk|k�1(·)i
(3.5)

where �k|k�1 denotes the intensity function of newborn objects from iteration k � 1
to k, �k|k�1 the spawning object transition density, pS,k|k�1 the object survival
probability, ⇡k|k�1 the single-object transition density, pD,k the object detection
probability, gk the single-object likelihood, Ck the clutter intensity function, and
hg(·), f(·)i ⌘

R
f(⇠)g(⇠)d⇠ (see e.g. [280] for details). An analytical solution to (3.4)-

(3.5) is provided by the Gaussian-mixture PHD (GM-PHD) filter [280] but it is based
on linear Gaussian assumptions regarding object birth and dynamics. A more general
solution is o↵ered by sequential Monte-Carlo PHD (SMC-PHD) filtering [216,281,302],
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Figure 3.2: PHD filtering using a particle representation. (A) Each object i at itera-
tion k has a state xk,i that is represented by random particles xn

k|k with corresponding

weights !n

k|k. (B) In the transition from iteration k � 1 to k an object (x0) may dis-

appear (;), persist (xp), or spawn (xs) according to the corresponding transition
functions. Here pS is shorthand notation for pS,k|k�1(x

0), since in practice a constant
is used (Table 3.1). (C) For each particle a prediction xn

k�1|k�1 ! xn
k|k�1 is made

within radius rk according to the transition functions for persistence (p) and spawning
(s).

which approximates the PHD with a set of N random particles xn
k|k and corresponding

weights !n

k|k as

Dk|k(x) ⇡
NX

n=1

!
n

k|k�xn
k|k
(x) (3.6)

so that the classic particle filtering scheme [12,78,215] can be applied.

3.2.3 PHD-filtering based neuron tracing

3.2.3.1 Definition and initialization

The multi-object filtering scheme proposed for neuron tracing defines the object state
as an oriented location:

x = [px, vx] = [x, y, z, vx, vy, vz] (3.7)

where px = [x, y, z] denotes the location and vx = [vx, vy, vz] the local orientation of a
tubular segment. Filtering starts from a set of N0 seeds (Fig. 3.1) sampled from a seed
pool consisting of the local maxima of the tubularity image ⌧(x, y, z) computed from
the original image using Hessian-based multiscale line filtering [225] and min-max
normalized to [0, 1]. Local maxima are sorted in descending order so that seeds with
high tubularity (meaning high confidence in the underlying image structure being a
neuron branch) are processed first. To avoid seeds being selected too close together,
in other words to ensure good spatial coverage of the neuron with seeds, for each
selected seed (while going from top to bottom of the sorted list) the seeds within a
circular neighborhood with radius r0 are ignored in the current round. If, after SMC-
PHD filtering (described in following Sec. 3.2.3.2), the seed pool is not exhausted, a
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new round is started by selecting a new set of seeds. During filtering, the observation
consists of the location and corresponding tubularity value:

z = [pz, ⌧z] = [x, y, z, ⌧ ] (3.8)

3.2.3.2 SMC-PHD algorithm

The proposed method implements neuron tracing by SMC-PHD filtering. It is based
on an approximation of Dk|k(x) in (3.6) using N = ⇢Nk particles, where Nk denotes
the number of objects to be filtered, and ⇢ the number of particles per object. That is,
the state of object i at iteration k, denoted xk,i, is represented by ⇢ random particles
xn
k|k with corresponding weights !

n

k|k (Fig. 3.2A). The multi-object state transition

in the prediction step (3.4) is a collection of single-object transitions (Fig. 3.2B) that
are approximated with transitions at the particle level (Fig. 3.2C). More specifically,
at the initial iteration k = 0, N0 seeds are selected and ⇢ particles are sampled in a
circular neighborhood with radius r0 around each seed location using the tubularity
value for importance sampling to determine the weights, resulting in the weighted
particle set {!n

0|0, x
n

0|0}
⇢N0

n=1. The initial local orientation of each particle, vxn
0|0

, is the

unit vector pointing from the seed location to the particle location pxn
0|0

. Subsequently,

the prediction (3.4) and update (3.5) steps are executed for iterations k = 1, 2, 3, . . . ,
until convergence. The transition and observation models (described next) allow to
incorporate application-specific knowledge in this process. At iteration k, the set of
weighted particles {!n

k�1|k�1, x
n

k�1|k�1}
⇢Nk�1

n=1 from iteration k� 1 is used to predict ⌘

new particles for each persistent and spawned object (Fig. 3.2C). In the update step
(3.5), a set of observations {zk,j}Mk

j=1 is used to update the predicted particle weights,

followed by estimation of the states {x̂k,i}Nk
i=1. The detailed algorithm pseudo code of

the introduced neuron tracing method is presented in Alg. 1.

Algorithm 1 Neuron tracing

1: k = 0 . Initialize
2: {!n

0|0, x
n

0|0}
⇢N0

n=1 . Initial particle and observation set

3: {x̂0,i}N0

i=1 . Initial estimate
4: repeat
5: k = k + 1
6: pn

i
⇠ h(p|x̂k�1,i) n 2 [1, ⇢Nk�1] . Draw observation particles

7: pn
i,j
2 Cj , j 2 [1,Mk] , n 2 [1, |Cj |] . Cluster observation particles

8: zk,j =
⇥
pn̂
i,j
, ⌧(pn̂

i,j
)
⇤

. Select representative sample
9: Zk = {zk,j , . . . , zk,Mk} . Construct observations

10: {!n

k|k, x
n

k|k}
⇢Nk
n=1, ⌫k, {x̂k,i}

Nk
i=1  SMC-PHD({!n

k�1|k�1, x
n

k�1|k�1}
⇢Nk�1

n=1 ,Zk) .

Algorithm 2
11: until [⌫k] = 0 . [·] ⌘ nearest integer
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3.2.3.3 Transition model

In the prediction step (3.4), three types of objects are assumed: newborn, persisting,
and spawned objects [280, 281]. By design, newborn objects are not considered in
presented tracing algorithm, since the seeding is used, hence �k|k�1(x) = 0.

Persisting objects in the current iteration correspond directly to existing objects
in the previous iteration. In algorithm, the transition density for predicting persistent
object x given object x0 in the previous iteration, is calculated as

⇡k|k�1(x|x0;, rk) =
1

⇡̃
e

�(|px�p
x0 |�rk)

2

2(rk/3)2
e
(vx·vx0 )

2⇡I0()
(3.9)

where ⇡̃ is a normalization factor such that the sum of ⇡k|k�1 over |px � px0 | 
2rk is unity, and I0 is the zero-order Bessel function of the first kind. The first
factor corresponds to a radial profile that peaks at the prediction step size rk. The
second factor is a circular normal distribution (von Mises) parametrized with the
unit direction vector vx0 from the previous iteration and circular variance . Here,
vx = (px�px0)/|px�px0 |, which connects the predicted location px with the location
px0 from the previous iteration. Particles xn

k|k�1,p (Fig. 3.2C) are drawn using ⇡k|k�1

as importance sampling function.
A spawned object is a new instance derived (spawned) from an existing object in

the previous iteration. This allows dealing with bifurcations during tracing. In the
showcased algorithm, the transition density for predicting a spawned object x given
x0 in the previous iteration, is calculated as

�k|k�1(x|x0;, rk) =
1

�̃
e

�(|px�p
x0 |�rk)

2

2(rk/3)2 ·
1Y

i=0

 
1� e

(�1ivx·vx0 )

2⇡I0()

!
(3.10)

where �̃ is a normalization factor such that the sum of �k|k�1 over |px � px0 |  2rk
is unity. The first factor has the same form as in (3.9) and the second factor is
the aggregate of the complementary circular normal distributions used for spawning
objects in positive and negative direction. An example of the intensity profile of
⇡k|k�1 and �k|k�1 is shown in Fig. 3.3. Particles xn

k|k�1,s (Fig. 3.2C) are drawn using
�k|k�1 as importance sampling function.

3.2.3.4 Observation model

In the update step (3.5), a set of observations {zk,j}Mk
j=1 is used to update the pre-

dictions from (3.4). Observations have a corrective role as they carry information
about the neuron centerline locations and corresponding tubularity values (3.8). The
importance sampling function h

h(p|x0;, rk) =
1

h̃
e

�(|p�p
x0 |�rk)

2

2(rk/3)2
e
(vp·vx0 )

2⇡I0()
⌧(p) (3.11)

is used to obtain the observations, where h̃ is a normalization factor such that the sum
of h over |p� px0 |  2rk is unity, and vp = (p� px0)/|p� px0 |. The first two factors
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Figure 3.3: Transition densities (2D examples) for persistent a) and spawned b) ob-

jects with z = 0, x0 =
h
0, 0, 0, 1p

2
,

1p
2
, 0
i
,  = 2, and rk = 3. c) Importance sampling

used in the observation model without the tubularity component, ⌧(p) = 1, and
 = 0.5. Rainbow color coding is used running from blue (indicating low values) to
red (indicating high values).

have the same form as in (3.9) but here  is typically lower to make the update
step more restrictive than the prediction step. The third factor is the normalized
tubularity measure ⌧ [225] at location p, which makes the observations correspond
preferably to regions with high tubularity, which are indeed more likely to contain
neuron structures.

To obtain the observations at iteration k, for each object i from the previous
iteration a set of particles {pn

i
}⇢Nk�1

n=1 is drawn from h using x0 = x̂k�1,i (the object
state estimate), with particle weight proportional to the tubularity value at that
location. All these particles together are subsequently clustered in an unsupervised
manner using mean-shifting [52], resulting in a set of clusters {Cj}Mk

j=1, with each

cluster Cj having a subset {pn
i,j
}|Cj |
n=1 of the particles. For each cluster, a representative

sample pn̂
i,j

is calculated using least-squares optimization,

n̂ = argmin
n

X

m2[1,|Cj |]

✓(pm
i,j
, px̂k�1,i , p

n

i,j
) (3.12)

where ✓(p0, p1, p2) denotes the squared Euclidean distance from point p0 to the line
segment defined by p1 and p2, calculated as

✓(p0, p1, p2) =
8
><

>:

|p0 � p1|2 if (p0 � p1) · (p2 � p1)  0

|p0 � p2|2 if (p0 � p2) · (p1 � p2)  0
|(p2�p1)⇥(p1�p0)|2

|p2�p1|2 otherwise

(3.13)

so that the line segment that best fits the cluster elements determines the selected
location. From this the observation is obtained as zk,j = [pn̂

i,j
, ⌧(pn̂

i,j
)]. The process is
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Figure 3.4: Formation of the observations (2D example). a) For each object i from
iteration k � 1, particles pn

i
are sampled from the importance sampling function h,

using the state estimate x̂k�1,i. The solid dot indicates the location of x̂k�1,i and
the contours represent lines of equal particle weight. (B) The particles are processed
by mean-shifting resulting in clusters Cj whose labeled particles are denoted as pn

i,j
.

(C) Each observation zk,j is obtained from the representative cluster particle pn̂
i,j

as
described in the main text. Contours represent lines of equal observation likelihood.
(D) The clutter intensity function.
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illustrated in Fig. 3.4. For the single-object likelihood in Eq. 3.5 a Gaussian function
centered at the spatial location of the observation is used, gk(z|x) = exp(�|pz �
px|2/2�2

z ), giving more importance to predictions closer to z. The clutter intensity
function is defined as an exponential dependency on the observation tubularity value,
Ck(z) = exp(�Kc⌧z), implying that the clutter increases as the tubularity value goes
to zero. In practice, clutter plays a role in detecting terminal points, causing tracings
with low particle weights (due to their proximity to regions with low tubularity values)
to not be resampled and thus dropped after the update step.

Algorithm 2 SMC-PHD filtering

1: Input:{(!n

k�1|k�1, x
n

k�1|k�1)}
⇢Nk�1

n=1 , {zk,j}Mk
j=1 . Dk�1(x) approx. observation Zk

2: for n = 1, . . . , ⇢Nk�1 do
3: for m = 1, . . . , ⌘ do
4: i = (n� 1)⌘ +m

5: Draw: xk|k�1,p ⇠ ⇡k|k�1(x|xnk�1|k�1)! xi
k|k�1,p . Persistent object

particles
6: Compute: !i

k|k�1,p = pS
1
⌘
!
n

k�1|k�1

7: Draw: xk|k�1,s ⇠ �k|k�1(x|xnk�1|k�1)! xi
k|k�1,s . Spawning object

particles
8: Compute: !i

k|k�1,s = pS
1
⌘
!
n

k�1|k�1
9: end for

10: end for
11: {(!n

k|k�1, x
n

k|k�1)}
Sk
n=1 = {(!n

k|k�1,p, x
n

k|k�1,p)}
⇢⌘Nk�1

n=1 [{(!n

k|k�1,s, x
n

k|k�1,s)}
⇢⌘Nk�1

n=1

. Union of particle sets
12: for n = 1, . . . , Sk do

13: Update: !n

k|k = (1� pD)!n

k|k�1 +
P

z2Zk

pDgk(z|xn
k|k�1

)!n
k|k�1

Ck(z)+
PSk

n=1
pDgk(z|xn

k|k�1
)!n

k|k�1

14: end for

15: ⌫k =
SkP
n=1

!
n

k|k . Cardinality calculation

16: Estimate: x̂k,i  {!n

k|k, x
n

k|k�1}
Sk
n=1 . Mean-shift clustering

17: Resample: Nk = [⌫k] , {!n

k|k, x
n

k|k�1}
Sk
n=1 ! {!n

k|k, x
n

k|k}
⇢Nk
n=1,!

n

k|k = ⌫k/(⇢Nk)
. Systematic resampling with ⇢ particles per object

3.2.3.5 Implementation details

Algorithms 1 and 2 provide a step-by-step overview of the introduced PHD-filtering
based neuron tracing method. For testing purposes the method was implemented
in Java as a plugin for ImageJ [1]. The method has several parameters for which
default parameters are given in Table 3.1. Based on the acquired experience, most
of them do not require extensive tuning and the default values were used for the
showcased experiments. An important aspect of any SMC-based algorithm is to use
a su�cient number of particles in the approximations. The conducted experiments
indicate that values of 10-20 are su�cient for ⇢ and ⌘ since the objects of interest in
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Parameter Default Description

Kc 30 Clutter intensity function decay

N0 20 Number of seed points per round

pD 0.9 Object detection probability

pS 0.9 Object survival probability

rk 3 voxels Radial estimation step size

⇢ � 10 Number of particles per object

⌘ � 10 Number of predictions per particle

 2 Circular variance in (3.9) & (3.10)

0.5 Circular variance in (3.11)

Table 3.1: Parameters of the proposed method with their default values. In accompa-
nying implementation constants values were used for the object detection probability
pD = pD,k and the object survival probability pS = pS,k|k�1.

neuron-related applications are approximately 1D structures in 3D space and therefore
are easily covered. Higher values can lead to higher accuracy and precision but at
proportionally higher computational cost. The most important parameters are the
numbers of seeds N0 and rounds (Fig. 3.2) and in the experiments (described next)
the performance of the presented algorithm was tested for di↵erent values of these
parameters.

3.3 Results

3.3.1 Neuron data sets

For evaluating the performance of the proposed method for both 2D and 3D neuron
tracing, three data sets (Fig. 3.5) were used. All datasets consist of real neuron images
acquired with fluorescence microscopy. Two data sets are 3D image stacks from the
DIADEM challenge [39]: neocortical layer-1 axons (NCL1A) with 16 image stacks
and olfactory projection fibers (OPF) with 9 image stacks. The third data set (HCN)
consists of 30 2D images of hippocampal neurons [255]. Together the data sets show
a good variety of image contrast and structural complexity. Further details about the
images can be retreived from the corresponding, cited publications.

3.3.2 Performance measures

The accuracy of the tracings produced by the proposed method was assessed by
comparison with the gold-standard obtained by manual delineation of the neuron
structures [102, 171]. To this end, two categories of evaluation measures are used.
The first consists of measures summarizing the spatial Euclidean distances between
the nodes of two tracings to be compared: the average spatial distance (SD), the
average substantial spatial distance (SSD), and the fraction of nodes whose distance
is at least the substantial distance (%SSD). Similar to previous studies using these
measures [196], the substantial distance was set to 2 (pixels in 2D and voxels in 3D).
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Figure 3.5: Example images with tracing results of the data sets used in the evaluation.
Top row: NCL1A image stacks (volume rendered) showing a network of neocortical
layer-1 axons. Middle row: OPF image stacks (volume rendered) showing olfactory
projection fibers. Bottom row: HCN images showing hippocampal neurons. The
tracings (overlaid in red) were obtained with the proposed method using 20 seeds and
at most 10 rounds (up to 40 for the top row to capture more detail). For illustration
purposes the image intensities are inverted in these visualizations compared to the
originals, and the tracings are o↵set with respect to the neuron structures for better
visual comparison.
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The second category of evaluation measures are based on the numbers of true-positive
(TP), false-positive (FP), and false-negative (FN) nodes according to the substantial
distance. From these, it is straightforward to compute the recall, R = TP/(TP+FN),
and precision, P = TP/(TP+FP), summarized using the F-score, F = 2PR/(P+R).
Prior to computing these measures the tracings (from the method and the gold-
standard) were resampled with an equal step size of 1 pixel using Vaa3D [196].

3.3.3 Evaluation of method behavior

First, behavior of the presented method was evaluated as a function of the number
of seeds and rounds. For this experiment P, R, and F values were measured for 1)
a single round of filtering with di↵erent numbers of seeds and 2) multiple rounds
of filtering using a fixed number of seeds. Since the algorithm showcased in this
chapter operates probabilistically, the results of five repetitions of the experiment
were averaged. The results for the NCL1A data set are shown in Fig. 3.7 and for
the other data sets in Fig. 3.6. As expected, R and F generally increase, but P
slightly decreases as the number of seeds and rounds increase, indicating an increase
in the number of FP detections. The specific patterns may di↵er depending on the
image content, but the observations indicate that as a function of the number of
seeds, the increase of R and F levels o↵ beyond about 40, therefore this value was
subsequently used. As a function of the number of rounds, R and F level o↵ after
about 4 rounds, indicating there is no need in practice to run the method exhaustively
on all possible seed points. This can be explained from the fact that seed selection
proceeds from highest to lowest tubularity value, so that later seeds correspond to
less and less valuable image structures, and the resulting tracings will be dropped
due to low particle weights. Examples of traced neurons for the di↵erent data sets
are shown in Fig. 3.5. As can be observed from the examples in the top row of the
figure, images with more fuzzy and fragmented structures may require more rounds
to capture more detail. Alternatively, a better tubularity filter may be needed.

3.3.4 Comparison with other methods

Next the performance of the introduced method (PHD) was compared with several
alterative methods, namely all-path pruning (APP2) [291], NeuroGPS-Tree (GPS)
[205], minimum spanning tree (MST) tracing as used in the BigNeuron project [190],
and Neural Circuit Tracer (NCT) [56]. For each of these methods the scores were
optimized by trying all possible parameter values on a grid. The results for the
NCL1A data set are shown in Fig. 3.12, for the OPF data sets in Fig. 3.8 and HCN
in Fig. 3.9. Further observation shows that showcased method (results indicated in
red) performs comparably or even better than the state-of-the-art methods. This
suggests there may indeed be an advantage in using probabilistic approaches such as
the one proposed in this work. It is also noticeable that NCT (results indicated in
blue), while performing superiorly in most cases, required significant user interaction
and manual correction to enable export of the tracings to the standard SWC file
format used throughout the evaluations. Thus the results of this method include a
high level of expert input and could serve as a reference. All other methods including
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Figure 3.6: Performance as a function of numbers of seeds and rounds for four example
cases from the OPF (a-d) and the HCN (e-h) data set. Similar trends were observed
for all cases in the respective data sets. Left panel per case: Precision (P), recall
(R), and F-score (F) after one round initialized with di↵erent numbers of seeds (N0).
Right panel per case: The scores after multiple rounds with a fixed number of seeds
(N0 = 40). Fifth-order polynomial curves were fit to the data to show approximate
trends.
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the presented one were fully automatic after parameter selection.
To further demonstrate the advantage of the presented method over the others

in challenging situations, the case when neuron fibers meet, run closely parallel to
each other for some distance, and then diverge again was studied. In order to an-
alyze the behavior of the di↵erent methods in a controlled manner, with increasing
distance between the fibers, the images with two fibers of similar intensity and scale
were synthesized. The results, shown in supplementary Fig. 3.10, demonstrate that
the method introduced in this chapter (PHD), similar to GPS, yields more faithful
tracings than APP2 and MST. NCT was not included in these experiments for reasons
mentioned above. Not surprisingly, all methods break down when the fibers overlap
completely. In addition, even more challenging case was created, with three fibers of
di↵erent intensity and scale. The results, shown in supplementary Fig. 3.11, illustrate
that the proposed method outperforms even the best alternatives.

In terms of computational e�ciency it turned out di�cult to directly compare the
methods. This was mainly due to the use of di↵erent programming languages (Java
versus C++) and the varying e�ciencies of underlying software libraries used on
the di↵erent operating systems which were considered and used for the computation
(Linux Ubuntu and Mac OS). Moreover further observations suggest that the absolute
as well as the relative execution times of the di↵erent methods varied widely depending
on the image content. Generally, APP2 method was found to be the fastest (on
the order of seconds per image), and PHD up to about one order of magnitude
slower, while GPS and MST were either slower or faster than PHD depending on the
configuration. NCT is ignored here for mentioned reasons. From these observations it
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Figure 3.7: Performance of the proposed method as a function of numbers of seeds
and rounds for an example image stack from the NCL1A data set. Similar trends
were observed for all stacks in the data set. Left panel: Precision (P), recall (R), and
F-score (F) after one round initialized with di↵erent numbers of seeds (N0). Right
panel: The scores after multiple rounds with a fixed number of seeds (N0 = 40).
Fifth-order polynomial fitting was used to show the approximate F-score trend.
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Figure 3.8: Performance comparison of the proposed method with several other meth-
ods on the OPF data set. For each method and each measure, the plotted box in-
dicates the 25-75 percentile, the horizontal bar indicates the median score, and the
whiskers and outliers are drawn using the default settings of R.
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Figure 3.9: Performance comparison of the proposed method with several other meth-
ods on the HCN data set. For each method and each measure, the plotted box in-
dicates the 25-75 percentile, the horizontal bar indicates the median score, and the
whiskers and outliers are drawn using the default settings of R.
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Case:

PHD:

GPS:

APP2:

MST:

Figure 3.10: Ability of the tested methods to separate two fibers of similar inten-
sity and scale running closely in parallel. The examples show cases with gradually
increasing distance between the fibers: overlap (left column), just separated (middle
column), and clearly separated (right column). The tracing results of PHD, GPS,
APP2, MST are overlaid (with slight o↵set) in red color.
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Case:

PHD:

GPS:

APP2:

MST:

Figure 3.11: Ability of the tested methods to separate three fibers with di↵erent
intensity and scale running closely in parallel. The examples show cases with gradually
increasing distance between the fibers: overlap (left column), just separated (middle
column), and clearly separated (right column). The tracing results of PHD, GPS,
APP2, MST are overlaid (with slight o↵set) in red color.
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Figure 3.12: Performance comparison of the method with several other methods on
the NCL1A data set. For each method and each measure, the plotted box indicates
the 25-75 percentile, the horizontal bar indicates the median score, and the whiskers
and outliers are drawn using the default settings of R.

is possible to draw a conclusion that the e�ciency of showcased method is comparable
to the state of the art.

3.4 Conclusions

A new method for tracing the branch centerlines of neurons based on Bayesian multi-
object tracking using probability hypothesis density (PHD) filtering was presented.
The method is able to simultaneously trace out multiple neuron structures in a prob-
abilistic fashion so that the same neuron segments may be covered multiple times
and are thus supported by more evidence. PHD filtering solves the computational
problems of direct Bayesian multi-object tracking and allows convenient handling of
bifurcations and terminations during the tracing process by modeling of spawned
objects and observation clutter. The results of experiments on various fluorescence
microscopy image data sets of real neurons showed that the proposed method performs
comparably or better than alternative state-of-the-art neuron tracing methods.

The current version of the proposed method is initialized with seed points sampled
from the local maxima (from highest to lowest) of the tubularity filter response. This is
a rather rudimentary approach that may sometimes result in missed branches (false
negatives). Ideally, seeds should be strategically distributed so that they cover as
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many branches of the neuron structure as possible while avoiding background artifacts,
and this is an important topic for further research. In addition, the current mechanism
responsible for trace termination, based on the clutter term of the PHD filter, relies
strongly on the tubularity score and thus is sensitive to local interruptions in neuron
staining. This could be remedied by using a better tubularity filter and/or refining the
clutter model. Thus, the future work would involve further study over the possibility
of further improvements achieved using di↵erent transition and observations models.
One of the future aims is also to extend the method to perform local branch radius
estimation during tracing in order to obtain complete neuron reconstructions.

Software implementing the proposed neuron tracing method was written in the
Java programming language as a plugin for the ImageJ platform. Source code is freely
available for non-commercial use at https://bitbucket.org/miroslavradojevic/
phd.





Chapter Four

Automated neuron reconstruction
from 3D fluorescence microscopy
images using sequential Monte

Carlo estimation

Microscopic images of neuronal cells provide essential structural information about

the key constituents of the brain and form the basis of many neuroscientific studies.

Computational analyses of the morphological properties of the captured neurons require first

converting the structural information into digital tree-like reconstructions. Many dedicated

computational methods and corresponding software tools have been and are continuously

being developed with the aim to automate this step while achieving human-comparable re-

construction accuracy. This pursuit is hampered by the immense diversity and intricacy of

neuronal morphologies as well as the often low quality and ambiguity of the images. This

chapter presents a novel method developed in an e↵ort to improve the robustness of digi-

tal reconstruction against these complicating factors. The method is based on probabilistic

filtering by sequential Monte Carlo estimation and uses prediction and update models de-

signed specifically for tracing neuronal branches in microscopic image stacks. Moreover, it

uses multiple probabilistic traces to arrive at a more robust, ensemble reconstruction. The

proposed method was evaluated on fluorescence microscopy image stacks of single neurons

and dense neuronal networks with expert manual annotations serving as the gold standard,

as well as on synthetic images with known ground truth. The results indicate that pro-

posed method performs well under varying experimental conditions and compares favorably

to state-of-the-art alternative methods.

Based upon: M. Radojević, E. Meijering, “Automated neuron reconstruction from 3D fluorescence
microscopy images using sequential Monte Carlo estimation”, Neuroinformatics, in press, 2018.
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4.1 Introduction

The brain is regarded as one of the most complex and enigmatic biological structures.
Composed of an intricate network of tree-shaped neuronal cells [13], together form-
ing a powerful information processing unit, it performs a myriad of functions that
are essential to living organisms [132]. Obtaining a blue print of the architecture of
this network, including the morphologies and interconnectivities of the neurons in
various subunits, helps to understand how the brain works [14,63,75], including how
neurodegenerative disease processes alter its function. A key instrument in this en-
deavor is microscopic imaging, as it allows detailed visualization of neuronal cells in
isolation and in tissue, thus providing the means to study their structural properties
quantitatively [232].

Quantitative measurement and statistical analysis of neuronal cell and network
properties from microscopic data rely on the ability to obtain accurate digital re-
constructions of the branching structures [115] in the form of a directional tree of
connected nodes [15]. The ever increasing amount of available image data calls for
automated computational methods and software tools for this purpose, as manual
delineation of neurons is extremely cumbersome even in single image stacks, and is
downright infeasible in processing large numbers of images [232, 260]. Automating
neuron reconstruction requires solving fundamental computer vision problems such
as detecting and segmenting tree-like image structures [2, 76, 169]. This is compli-
cated by the large diversity of neuron types, imperfections in cell staining, optical
distortions, inevitable image noise, and other causes of ambiguity in the image data.
Consequently, with the current state-of-the-art, manual proof-editing of automatically
obtained digital reconstructions is often necessary [193]. Recent international initia-
tives such as the DIADEM challenge [102] and the BigNeuron project [190,194] have
catalyzed research in automated neuron reconstruction but have also clearly revealed
that further improvement is still very much needed before computers can fully replace
manual labor in performing this task.

The aim of the methodology presented in this chapter is to contribute to the de-
velopments in the field by proposing a novel fully automated neuron reconstruction
method based on probabilistic filtering techniques. Starting from seed points that
have a high probability of being centered at neuronal branches, presented method
recursively traces these branches by sequential Monte Carlo estimation, using state
transition and measurement models designed specifically for this purpose. This re-
sults in a series of possibly overlapping but probabilistically independent estimates
of the branches, which are subsequently combined into a refined estimate of the ac-
tual branch centerlines using mean-shifting. The early versions of the method were
presented at conferences [209, 211] and one implementation of it (named Advantra)
donated for inclusion in the BigNeuron benchmarking study [190,194]. Since then the
method has been improved and its software implementation and have significantly ex-
tended its experimental evaluation. A detailed description of the method is provided
in this chapter, its implementation, and the experimental results, and show that it
performs favorably compared to several state-of-the-art neuron reconstruction meth-
ods from the BigNeuron project as well as an alternative probabilistic method [208].
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A B C D E F

Figure 4.1: Schematic overview of the six main steps of the proposed method: (A)
soma extraction, (B) seed extraction, (C) branch tracing, (D) trace refinement, (E)
node grouping, (F) tree construction.

4.2 Related work

Early methods and tools for digital neuron reconstruction were semi-automatic and
required extensive manual intervention for their initialization and operation or the
curation of faulty results [45, 103, 104, 167]. With the increasing capabilities of com-
puters it became possible to store and process 3D images of neurons [25, 58]. More
recently, the state-of-the-art in the field has moved towards full automation of neuron
reconstruction, and various freely available software tools are now available for this
purpose [155, 189, 196, 197], though the need for flexible editing tools has remained
unabated [71,159].

Neuron reconstruction methods typically have a modular design where each mod-
ule or stage of the processing pipeline deals with di↵erent structural objects. De-
pending on the subproblems being solved, modules can operate independently, or
work together for example to combine local and global processing, possibly requir-
ing multiple iterations. Several subproblems that can be identified in the literature
include image prefiltering and segmentation [178, 247, 269, 310], soma (cell body) de-
tection and segmentation [204], landmark points extraction [5,55,212,259,283], neuron
arbor tracing [144, 153, 208, 291, 307], and assembling the final tree-like graph struc-
ture [269, 300, 309]. The techniques for solving each of these subproblems are briefly
reviewed in the remainder of this section. Since presenting a novel method is the
primary goal of this chapter, the review is not meant to be exhaustive, but to put the
new method into context.

The pool of neuron reconstruction methods is very diverse [2, 76, 169, 190] but
there are also many commonalities. For example, image prefiltering to enhance
tubular structures is typically carried out using Hessian or Jacobian based process-
ing [5, 283, 293, 300]. And to cope with uneven staining, adaptive thresholding [310],
perceptual grouping [181], and vector field convolution [179] have been used. For im-
age segmentation (separating foreground from background), a wide variety of methods
has been proposed, including the use of feature-based classifiers [51, 131, 269], tubu-
larity based supervised regression [247], and even deep learning [149]. The general
di�culty of supervised methods, however, is their need for extensive manual anno-
tation for training to arrive at usable segmentation models. This is avoided in the
proposed method by using carefully designed explicit models.

For the detection and segmentation of the neuronal somas, which typically have
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a much larger diameter than the dendritic and axonal branches, a simple and e�-
cient solution is to apply morphological closing and adaptive thresholding [294]. An
alternative is to use shape fitting approaches [204]. Next, to initialize and/or guide
the segmentation of the arbor, landmark points are often extracted using image filters
that specifically enhance tubular structures [55,212,259,269,283], a popular one being
the so-called “vesselness filter” [92]. Classical approaches have been adopted for soma
and seed point detection throughout the proposed method, as detailed in the next
section.

Segmentation or tracing of all branches of the dendritic and axonal trees is the
main challenge of the reconstruction problem. A widely used approach to overcome
the di�culties caused by imperfect staining and image noise is to use techniques
that find globally optimal paths between seed points by minimizing a predefined
cost function [155, 171, 192, 205]. But many other concepts have been proposed as
well, including model fitting [228, 307], contour extraction [144], active contour seg-
mentation [160, 283], level-set or fast-marching approaches [24, 291], path-pruning
from oversegmentation [192], distance field tracing [295], marching rayburst sam-
pling [175], marked point processing [23], iterative back-tracking [153], and learning
based approaches [51, 96, 222]. The works presented in previous chapters of this the-
sis [208,209,211] have shown the great potential of probabilistic approaches to neuron
tracing which formed the basis for the new fully automated neuron reconstruction
method presented and evaluated in the next sections.

The final aspect of neuron reconstruction is the assembling of the complete neu-
ronal tree structure from possibly many partial or overlapping traces and putting it
into a format that is both representative and suitable for further automated analysis.
This is typically solved by graph optimization strategies such as the minimum span-
ning tree (MST), the alternative K-MST [107,269], or integer programming [267]. To
deal with very large data sets it has also been proposed to assemble the 3D graph
representation through tracing in 2D projections and applying reverse mapping [309].
However, with the advent of sophisticated assemblers such as UltraTracer [198], it is
possible to extend any base tracing algorithm to deal with arbitrarily large volumes
of neuronal image data [198]. Therefore, the projections are not used in the method
proposed in this chapter. Instead, the tracing is performed in the original image
(sub)volumes. And to obtain the graph representation a new approach is proposed
to refining and grouping the individual traces.

4.3 Proposed method

The pipeline of the proposed method consists of six steps (Fig. 4.1) described in
detail in the following subsections. The basic underlying assumption suggests that
image stacks contain a single neuron (one soma) or just an arbor (no soma) as in the
DIADEM [39] and BigNeuron data [190]. In short, the soma is extracted first and
a set of seeds, which serve to initialize the probabilistic branch tracing scheme. The
resulting traces are iteratively refined and their corresponding nodes spatially grouped
into a representative node set that is traversed to form the final reconstruction.
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Figure 4.2: Functions used in the prediction and update steps of the SMC filtering:
(a) the prediction importance sampling distribution (for ease of visualization a 2D
example is given) and (b) the measurement likelihood function for di↵erent values of
K.

4.3.1 Soma extraction

The soma typically has a considerably larger diameter than the individual branches
of the neuronal arbor (Fig. 4.1A). Thus it can be easily extracted using morpholog-
ical filtering operations [294]. Specifically, in the method showcased in this chapter,
grayscale erosion is applied to remove all branches and leave only the (eroded) soma.
To this end, the radius rs of the structuring element needs to be larger than the
largest expected branch radius in a given data set, and smaller than the expected
soma radius. The resulting image is then smoothed using a Gaussian filter with stan-
dard deviation equal to rs and segmented using max-entropy thresholding [212] to
obtain a blob corresponding to the soma. For computational e�ciency both the ero-
sion and the Gaussian smoothing operation are carried out by separable filtering. In
this chapter the soma is modeled in the final graph representation of the neuron as a
single spherical node with position equal to the centroid of the segmented blob and
radius equal to the average distance of the blob voxels to the centroid. Alternatively,
the soma could be modeled with a set of nodes that together represent the blob as
accurately as needed, but in introduced applications this is not needed.

4.3.2 Seed extraction

To initialize the branch tracing, a set of seed points is extracted (Fig. 4.1B). These
seeds are points with very high likelihood of being centered on a branch. In presented
method, this likelihood is estimated using a Hessian-based multiscale tubularity filter
[92]. For each voxel location p = [x, y, z] this filter yields not only an estimate of
the tubularity of the local image structure, but also an estimate of the structure’s
orientation v = [vx, vy, vz] as derived from the Hessian eigenvector corresponding to
the smallest absolute eigenvalue, and an estimate of its spatial scale as derived from
the Gaussian � at which the filter yields the highest tubularity value. From the
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resulting tubularity map, seeds si = [pi, vi,�i] are selected whose tubularity value is
the highest in a cylindrical neighborhood with radius 3�i, centered at pi, and oriented
along vi. A find-maxima function ported from ImageJ is used here. It applies a noise
tolerance ⌧ to prune insignificant local maxima [88].

4.3.3 Branch tracing

For each seed si, this method traces the local image structure in two directions,
+vi and �vi, producing a pair of local traces (Fig. 4.1C). A trace is considered to
consist of a sequence of hidden states, x0:L = (x0, . . . , xL), where x0 is the initial state
extrapolated from the seed si, and xL is the last state of the trace. Similar to the
seeds, the states xi = [pi, vi,�i] contain estimates of the position pi = [xi, yi, zi], the
direction vi = [vxi , vyi , vzi ], and the scale �i of the underlying neuron branch. The
states are estimated sequentially in a probabilistic fashion using Bayes’ rule:

p(xi|z0:i) / p(zi|xi)
Z
p(xi|xi�1)p(xi�1|z0:i�1)dxi�1 (4.1)

where p(xi|z0:i) is the posterior probability distribution of the state xi given mea-
surements z0:i from the first to the current iteration, p(xi|xi�1) is the state transition
prior, and p(zi|xi) is the likelihood of measuring zi given state xi. It is assumed that
the state transition is a Markovian process and the measurements are independent.
To allow for nonlinearities in the process, the estimation problem (4.1) is solved using
sequential Monte Carlo (SMC) filtering [77], also known as particle filtering [12]. Here
the posterior is approximated using a set of N samples xk

i
with corresponding weights

w
k

i
as:

p(xi|z0:i) ⇡
NX

k=1

w
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i
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i
) (4.2)

where the weights are normalized so that
P

k
w

k

i
= 1.

Each iteration in SMC filtering consists of a prediction step and an update step.
In the prediction step, given the samples xk

i�1 from the previous iteration, N new
samples xk

i
are drawn using the state transition prior. The importance sampling

distribution that is used for this is (Fig. 4.2a):
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(4.3)

where I0 denotes the zero-order Bessel function of the first kind,  is the circular
variance parameter, ⌘ is a normalization factor that makes the prediction over all N
samples integrate to unity, di = ||pi � pk

i�1|| is the Euclidean distance between the
predicted position and the sample position in the previous iteration, d is the tracing
step size, and ⇣ the scale variance parameter. Each predicted state is assigned a unit
direction vi = (pi � pk

i�1)/||pi � pk
i�1|| defined by two consecutive positions. And
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�i � �
k

i�1 represents the di↵erence in scales, which contributes to the importance
sampling function by a Gaussian component, giving a higher value to state samples
that retain the scale.

In the update step, the newly drawn samples are updated using the following
likelihood function (Fig. 4.2b):

p(z|x) = e
Kcx (4.4)

where K determines the sensitivity to the normalized cross-correlation cx 2 [�1, 1],
which quantifies the similarity of the underlying image structure for x = [p, v,�] to a
cylindrical template model with Gaussian profile (Fig. 4.3):

cx =

P
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p0 = p0(k, l,m) = p + ku + lw+mv (4.6)

G� = G�(k, l,m) = G�(k, l) = exp
�
�
�
k
2 + l

2
�
/2�2

�
(4.7)

where (k, l,m) are the template coordinates, which transform to p0 in image coordi-
nates since the template is centered at p and is oriented in the direction v and has
scale � of x, and by definition u?v, w?v, and u?w. The summation is limited to
b�3�c  k, l  d3�e and b�c  m  d�e which corresponds to the spatial extent of
the template. Ī and Ḡ denote the mean of the image intensities and of the template
intensities, respectively, within the mentioned limits. The value of cx is independent of
intensity scalings and o↵sets and thus provides us with a robust measure of structural
resemblance, which may range from �1 (inverse correlation), to 0 (no correlation), to
+1 (full correlation). The weights of the samples are updated accordingly as:
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and renormalized so that
P

k
w

k

i
= 1. To avoid weight deterioration, systematic

resampling [135] is performed each time the e↵ective sample size Ne↵ [137] falls below
80% of N . The final state estimate after each iteration i, which constitutes a node of
the trace, is computed from the weighted samples as the centroid:

x̂i =
X

k

w
k

i
xk
i

(4.9)

Filtering is terminated if the average correlation value
P

k
cxk

i
/N drops below the

threshold cmin, indicating the end of the underlying neuron branch in the image, or if
the iteration limit L is reached. Since the filtering is done for each seed, and in both
(opposite) directions, the same neuron branch may be traced many times over, but
in a probabilistically independent way, providing accumulating evidence about the
presence and location of the branches. However, to avoid excessive over-tracing and
to reduce the computation time, the method also monitors the node density Dn per
image volume unit n⇥ n⇥ n and terminate the tracing if the density in the current
position exceeds the limit �n.
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Figure 4.3: Cylindrical template intensity model G�. The model has a Gaussian
profile in coordinates k and l and is constant in coordinate m. Both the 3D (a) and
the 2D (b) version is shown.

4.3.4 Trace refinement

After the tracing step, each neuron branch may have multiple corresponding traces,
and each trace node has bidirectional links to neighboring nodes (Figs. 4.1D and 4.4A)
to allow trace traversal in any of the possible directions in the final tree construction
step. Denoting the total number of traces by T , and the nodes of any given trace t

by n
t

i
, i = 1, . . . ,M t, it is possible to write the complete set of nodes as:

N =

⇢n
n
1
1, . . . , n

1
M1

o
, . . . ,

n
n
T

1 , . . . , n
T

MT

o�
(4.10)

but in the sequel, the elements of N are written more generally as nk, k = 1, . . . ,M ,
where M =

P
T

t=1 M
t. Each node nk contains an estimate of the center position

(x, y, z) and the cross-sectional radius (r) of the underlying branch structure, as well
as the cross-correlation (c) with the cylindrical Gaussian template model, and a set
(I) containing the indices in N of the neighboring nodes:

nk = {xk, yk, zk, rk, ck, Ik} (4.11)

where Ik has either two elements (in the case of a body node) or just one (in the case
of a terminal node).

The goal of the trace refinement step is to exploit the cumulative evidence provided
by the over-tracing in the previous step to improve the individual node estimates.
Specifically, each node nk is updated to:

n̄k = {x̄k, ȳk, z̄k, r̄k, c̄k, Īk} (4.12)
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by applying mean-shifting [52], resulting in an updated node set N̄ . Mean-shifting
iteratively moves each node element to the local mean of the nodes in its vicinity. This
reduces the variance of the estimates but preserves the linking of the nodes: Ī = I.
In practice, five iterations are su�cient to reach satisfactory radial trace alignment
(Fig. 4.4B). The kernel size used in the mean-shifting process is taken to be the initial
radius of each node. In the implementation, prior to mean-shifting, all traces are
resampled with a step size of one voxel to get a more fine-grained result.

Algorithm 3 Node grouping.

18:Require: N̄ , rg . refined node list and grouping radius
1: G = [0, . . . , 0] . initialize node group mapping list |G| = |N̄ | = M

2: N̂ = {} . initialize group node set |N̂ | = 0
3: for k = argmaxk c̄k, . . . , argmink c̄k do . descending correlation
4: if G[k] = 0 then . initialize new group if yet ungrouped
5: m = |N̂ |+ 1 . next node group index
6: G[k] = m . fill node group mapping
7: t = 1 . index group elements
8: (x0

t
, y

0
t
, z

0
t
, r

0
t
, c

0
t
) = (x̄k, ȳk, z̄k, r̄k, c̄k) . initialize centroid

9: I 0
t
= Īk . initialize link

10: for l = 1, . . . , k � 1, k + 1, . . . ,M do . all other nodes
11: if (x̄l � x̄k)2 + (ȳl � ȳk)2 + (z̄l � z̄k)2  r

2
g
then

12: t = t+ 1
13: x

0
t
= t�1

t
x
0
t�1 +

1
t
x̄l . iterative mean

14: y
0
t
= t�1

t
y
0
t�1 +

1
t
ȳl

15: z
0
t
= t�1

t
z
0
t�1 +

1
t
z̄l

16: r
0
t
= t�1

t
r
0
t�1 +

1
t
r̄l

17: c
0
t
= t�1

t
c
0
t�1 +

1
t
c̄l

18: I 0
t
= I 0

t�1 [ Īl . accumulate node linkage
19: G[l] = m . fill node group mapping
20: end if
21: end for
22: n̂m = (x0

t
, y

0
t
, z

0
t
, r

0
t
, c

0
t
, I 0

t
) . assign group values

23: N̂ = N̂ [ {n̂m} . add node group
24: end if
25: end for
26: for k = 1, . . . , P do . P = |N̂ |
27: Îk = group(Îk, G) . turn node to group node indices
28: Îk = unique(Îk) . remove repeating indexes
29: Îk = Îk \ {k} . remove self-links
30: end for

4.3.5 Node grouping

Although the previous step results in refined node estimates, it keeps the total number
of nodes and corresponding multiple traces. The next step is to merge overlapping
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A B C D

Figure 4.4: Trace merging: (A) accumulated traces, (B) trace refinement, (C) node
grouping, (D) tree traversal.

traces and obtain a single trace for each neuron branch. This is accomplished with
the node grouping process (Figs. 4.1E and 4.4C) as detailed in Algorithm 3. It
iteratively takes from the refined set N̄ an as-yet ungrouped node with the highest
cross-correlation value, finds all its neighboring nodes within the predefined Euclidean
distance rg, and groups them by calculating the mean value of each element while
accumulating all node links and mapping their indexes to the group node index list.
This results in a new set N̂ = {n̂1, . . . , n̂P }, P M , of group nodes:

n̂k = {x̂k, ŷk, ẑk, r̂k, ĉk, Îk} (4.13)

and any two n̂i and n̂j are connected if there exists a link between any of the refined

nodes captured by these two, as revealed by the accumulated index sets Îi and Îj .
Thus, all existing inter-node connections Ī are preserved, and are projected into the
inter-group connections Î.

4.3.6 Tree construction

The final step of the showcased method is the construction of a graph representing the
complete neuronal arbor. This is facilitated by the bidirectional connectivity of the
group nodes in N̂ . However, similar to a real neuron, the final graph must be a tree,
in which the nodes are unidirectionally linked (Figs. 4.1F and 4.4D), as also required
by the SWC file format for storing digital neuron reconstructions [44, 256]. Starting
from the soma node, or from the group node with the highest cross-correlation value
if no soma was found in the image, the nodes in N̂ are iteratively traversed using
a breadth-first search (BFS) algorithm. In this process it is possible to discard any
isolated branches and single-node terminal branches (false positives).

4.3.7 Implementation details

The method showcased in this chapter, named Probabilistic Neuron Reconstructor
(PNR)1, was implemented in C++ as a plugin for the freely available and extendable

1The source code of the method is freely available for non-commercial use from https://

bitbucket.org/miroslavradojevic/pnr
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Parameter Value Description

rs 6 [voxels] Erosion radius

� {2, 4, 6} [voxels] Scale combinations

⌧ 10 [8-bit scale] Local maxima tolerance

N 20 Number of samples

 3 [voxels] Circular variance

d 3 [voxels] Tracing step size

⇣ 1 [voxels] Scale variance

K 20 Likelihood sensitivity

cmin 0.5 Correlation threshold

L 200 Iteration limit

n 1 [voxels] Density volume

�n 4 [count/voxel] Node density limit

rg 2 [voxels] Grouping radius

Table 4.1: Parameters of the method and default values. The ordering is according
to first mention in the main text.

bioimage visualization and analysis tool Vaa3D [189,196].2 As mentioned in the pre-
ceding sections, the method has a number of free parameters, which are summarized
in Table 4.1, where the default values are also listed.

4.4 Experimental results

The performance of the PNR method was evaluated using both synthetic and real
fluorescence microscopy image stacks of single neurons and was compared to several
alternative 3D neuron reconstruction methods that yielded favorable performance in
the BigNeuron project [190]. These included the second all-path pruning method
(APP2) [291], NeuroGPS-Tree (GPS) [205], BigNeuron’s minimum spanning tree
(MST) method, along with the alternative probabilistic method based on probability
hypothesis density filtering (PHD) [208] presented in separate chapter of this thesis.

To quantify performance, evaluation adopted the commonly used measures of
distance and overlap of neuron reconstructions with respect to the ground truth (in
the case of synthetic images) or the gold-standard reconstructions obtained by manual
annotation (in the case of real images). The distance measures were the average
minimal reciprocal spatial distance (SD) between nodes in the reconstructions being
compared, the substantial spatial distance (SSD) using only the nodes with a spatial
distance larger than a threshold S, and the percentage of these substantially distant
nodes (%SSD), all computed after densely resampling each reconstruction to reduce
the distance between its adjacent nodes to one voxel (see [196] for details). The
overlap measures were precision (P), recall (R), and the F score [201], computed from
the numbers of true-positive (TP), false-positive (FP) and false-negative (FN) nodes
according to the spatial distance threshold S.

All experiments were performed on a MacBook Pro with 2.2 GHz Intel Core i7

2http://vaa3d.org



76 4 Automated neuron reconstruction using sequential Monte Carlo estimation

(a) (b)

Figure 4.5: Illustration of the synthetic neuron data set used in the presented exper-
iments. (a) Example images of the 10 selected neurons simulated at SNR = 4 and
COR = 0.0. (b) Di↵erent simulations of the neuron indicated by the red outline in
(a) for SNR = 2, 3, 4, 5, and 10 (from left to right) and COR = 0.0, 1.0, and 2.0
(from top to bottom). The marked image in (b) is the same as the marked image in
(a). All examples shown here are maximum intensity projections of the 3D synthetic
images with inverted intensities for better visualization.

processor and 16 GB RAMmemory to test the practicality of the methods on a typical
computer system. For each method the score was optimized for each performance
measure by exploring a grid of possible parameter values around the default ones (see
Table 4.1 for PNR method and the cited publications for the other methods). To keep
the experiments feasible, the maximum allowed processing time per stack and method
was set to 2 hours. For the conciseness, only the F scores (higher is better) and SSD
scores (lower is better) are shown in the sequel, but the conclusions are based on the
complete body of results.

4.4.1 Experiments on synthetic neuron images

Prior to evaluating how well introduced method emulates expert manual reconstruc-
tion in real neuron images, a controlled experiment was first performed using syn-
thetic neuron images, with known ground-truth reconstructions and predefined levels
of signal-to-noise ratio (SNR) and inter-voxel correlation (COR). This allowed us to
study the robustness of the method compared to the others as a function of these im-
age quality factors. For this experiment 10 neurons were selected from the BigNeuron
training data set [190], representative of the range of morphological complexities in
the data set, and for which node radius information (non-default) was available in
the corresponding gold-standard reconstructions in SWC format. A dedicated plugin
for ImageJ [229] called SWC2IMG was developed for this purpose3. The plugin takes
any SWC file as input and simulates fluorescence microscopy imaging of all neuronal
branches in the file at a specified SNR and COR level, producing an image stack whose
true digital reconstruction is the very input. It assumes that in practice, because of

3https://github.com/imagescience/SWC2IMG
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(a) Examples are shown for COR = 0 (top)

and 1 (bottom) in combination with S = 2

(left) and 3 (right).
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(b) Examples are shown for COR = 0 (top)

and 1 (bottom) in combination with S = 2

(left) and 3 (right).

Figure 4.6: Average score of the methods for the synthetic images as a function of
SNR: a) F score and b) SSD score.

the relatively large spatial extent of even a single neuron with its complete arbor,
the combination of optical magnification factor and digital image matrix size in real
neuron images is typically such that the voxel size is larger than the point spread func-
tion (PSF), implying that the partial-volume e↵ect of digitization is more prominent
than the optical blurring by the microscope. Based on this, the plugin simulates the
imaging simply by estimating for each voxel which fraction of its volume is occupied
by the neuron. Next, it simulates noise by using the Poisson noise model representa-
tive of optical imaging, which defines SNR as the image intensity inside the neuron
above the background, divided by the standard deviation of the noise inside [241].
And finally, to allow for correlated signal and noise, which was found to improve the
visual realism of the simulated images, the plugin also o↵ers the possibility to apply
Gaussian smoothing at a specified scale, being the COR parameter, while preserving
the SNR level. Generally, the lower the SNR and/or the higher the COR level, the
more challenging the data and the reconstruction problem.

Using this plugin a synthetic data set was created containing image stacks for a
range of SNR and COR values for each neuron (Fig. 4.5). Specifically, SNR = 1, 2,
3, 4, 5, 10, 20, and COR = 0, 0.5, 1, 1.5, 2 were considered. Thus, the generated
synthetic data set consisted of 10 (neurons) ⇥ 7 (SNR levels) ⇥ 5 (COR levels) = 350
image stacks, attempted to reconstruct optimally using the five considered methods
(APP2, GPS, MST, PHD, PNR) and a parameter grid-search approach. However,
some of the images were very challenging, especially the ones with many branches and
low SNR or high COR values, causing the methods to sometimes require excessive
computation times or even to get stuck altogether. Because of the mentioned time
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Figure 4.7: Average F score of the methods for the synthetic images as a function of
COR. Examples are shown for S = 2 (top) and 3 (bottom) in combination with SNR
= 2, 4, 5, 10 (left to right).

constraint, not all methods were able to complete all the reconstructions, and it turned
out that only 7 out of the 10 neurons could be reconstructed by all the methods for
all SNR and COR values. Therefore the results are presented only for those.

From the average F and SSD scores of the methods as a function of SNR for a
few sample values of COR and S (Figs. 4.6a and 4.6b) it is possible to observe that,
as expected, increasing the SNR generally improves the performance of all methods
(increasing F and decreasing SSD scores). It is also noteworthy that the two proba-
bilistic methods (PHD and PNR) are more robust against noise (especially according
to F) and that the method proposed in this chapter (PNR) is often superior overall.
The results also show that, as expected, increasing the value of COR (which yields
more di�cult images) has a strong negative impact on the performance of all methods
(lower F and higher SSD scores for the same SNR). This is confirmed when looking
more in-depth at the results as a function of COR (Figs. 4.7 and 4.8). Additionally,
again as expected in all cases, further observations indicate that increasing the value
of S (meaning being more lenient in matching reconstructions to the ground truth)
may also strongly a↵ect the scores of all methods (meaning higher F scores, but in
this case also higher SSD scores, as the latter includes only node distances larger
than S). This is confirmed when looking explicitly at the performance of the methods
as a function of S (Figs. 4.9 and 4.10). These results reveal that both the absolute
and the relative performance of di↵erent methods being compared may depend on S.
This is an important observation, since in all studies available in the known existing
literature, the somewhat arbitrary value of S = 2 is taken for granted in calculating
performance and ranking the methods. Presented results (Figs. 4.9 and 4.10) show
that taking other values of S may yield a di↵erent ranking. Notwithstanding this
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Figure 4.8: Average SSD score of the methods for the synthetic images as a function
of COR. Examples are shown for S = 2 (top) and 3 (bottom) in combination with
SNR = 2, 4, 5, 10 (left to right).
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Figure 4.9: Average F score of the methods for the synthetic images as a function of
S. Examples are shown for COR = 0 (top) and 1 (bottom) in combination with SNR
= 2, 4, 5, 10 (left to right).
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Figure 4.10: Average SSD score of the methods for the synthetic images as a function
of S. Examples are shown for COR = 0 (top) and 1 (bottom) in combination with
SNR = 2, 4, 5, 10 (left to right).

finding, displayed results also show that under most experimental conditions (SNR,
COR, S), the proposed method (PNR) yields superior results. While the alternative,
probabilistic neuron tracing method (PHD) [208] is often a strong competitor, the
results indicate that the PNR method is more favorable, which is possible to ascribe
to its better models for seed point extraction and branch tracing.

Together, the results of the experiments on synthetic neuron images suggest that
tracing the image structures repeatedly and in a statistically independently way, in-
deed yields more evidence about the underlying neuron branches and leads to better
reconstructions. This also follows from a visual comparison of the reconstructions
(Fig. 4.11). Especially at low SNRs, pruning and fast-marching based methods tend
to oversegment the images, while the probabilistic methods still perform relatively
well regardless. Even at high SNRs, when most of the methods perform comparably,
the proposed method follows the branch structures more closely (see zooms in the
last row of Fig. 4.11).

4.4.2 Experiments on real neuron images

In addition to synthetic data, three real neuron image data sets were used to evaluate
the absolute and relative performance of the presented method. The first two are the
olfactory projection fibers (OPF) data set (9 image stacks) and neocortical layer-1
axons (NCL1A) data set (16 image stacks) from the DIADEM challenge [39], and the
third is part of the BigNeuron (BGN) training data set (76 image stacks) [190], all
imaged with fluorescence microscopy (confocal or two-photon) and manually anno-
tated as described in detail in the cited works and corresponding resources. Being
the smallest of the three, in terms of both neuronal volume and complexity, OPF is
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Figure 4.11: Visual comparison of neuron reconstructions produced by the considered
methods from synthetic image stacks of a single neuron at di↵erent SNR levels. The
image stacks (generated used COR = 0) are shown as inverted maximum intensity
projections (left column) and the reconstructions of the di↵erent methods (remaining
columns) are shown in red as surface renderings.
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A

C

B

Figure 4.12: Illustration of the real neuron image data sets used in the presented
experiments. Examples are shown of (A) the OPF data set (4 of 9 stacks), (B)
the NCL1A data set (6 of 16 stacks), and (C) the BGN data set (13 of 76 stacks).
Each example shows the maximum intensity projection of the image stack (left panel)
but with inverted intensities for better visualization, and the corresponding manual
reconstruction (right panel) as a surface rendering (in red), both generated using
Vaa3D [196].

probably the most often used data set in the field. NCL1A is often used as it con-
tains neuronal network-like structures and no clear somas. And BGN is the largest,
most diverse, and thus most challenging data set for evaluating neuron reconstruction
methods. Together, the 100+ image stacks in these data sets have a wide variety of
image qualities and volumes (10 MB to 2 GB per stack) and portray a wide range
of neuronal shapes and complexities (Fig. 4.12), representative of many studies. For
some stacks in the BGN data set, the voxel size was unknown, and in these cases
the default x:y:z voxel aspect ratio of 1:1:2 was used, reflecting the typically lower
resolution in the depth dimension. Also, because of the mentioned processing time
constraint, 3 of the 76 image stacks could not be reconstructed by all methods, so
the presented results are based on the remaining 73. The results of the experiments
on these three real data sets (Figs. 4.13-4.15) indicate that, as in the experiments
on synthetic data, the probabilistic methods PHD and PNR typically show superior
performance in terms of both F and SSD score. Of these two methods, the PNR
method proposed in this chapter consistently shows the smallest performance spread,
indicating it is more robust than the alternative PHD method. For the BGN data
set, being the most diverse of the three, the performance spread (including outliers)
of all methods is the largest, and the increase in performance as a function of S is
the smallest, as expected. Nevertheless, the PNR method consistently shows the best
overall performance especially for this data set. In other words, for any given data
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Figure 4.13: Performance comparison for the OPF data set. Results are shown for
the F measure (left column) and SSD measure (right column) and in the form of
distributions for S = 2 (standard R box plots in top row) and averages as a function
of S (bottom row).

set similar to those considered in this study, PNR is the favorable method a priori.
Obviously this does not necessarily mean that PNR will give the best reconstruction
for each and every image stack in the data set, but simply that the chances are higher.
This is confirmed when looking at a few example image stacks from the three data
sets and the corresponding best reconstructions produced by the di↵erent methods
by maximizing the F score in the parameter grid search (Figs. 4.16-4.18). As these
examples show, although PNR often outperforms the other methods, in specific cases
one of the other methods may give better reconstructions. But altogether the experi-
mentation results suggest the conclusion that the PNR method showcased throughout
this chapter is a valuable addition to the neuron reconstruction toolbox.

4.5 Conclusions

A new fully automated probabilistic neuron reconstruction method (PNR) based on
sequential Monte Carlo filtering is presented in this chapter. It traces individual
neuron branches from automatically detected seed points repeatedly but statistically
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Figure 4.14: Performance comparison for the NCL1A data set. Results are shown
for the F measure (left column) and SSD measure (right column) and in the form of
distributions for S = 2 (standard R box plots in top row) and averages as a function
of S (bottom row).
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Figure 4.15: Performance comparison for the BGN data set. Results are shown for
the F measure (left column) and SSD measure (right column) and in the form of
distributions for S = 2 (standard R box plots in top row) and averages as a function
of S (bottom row).

APP2 GPS MST PHD PNR

F = 0.885 F = 0.919 F = 0.934 F = 0.921 F = 0.929

Figure 4.16: Example neuron reconstructions of an image stack from the OPF data
set. Shown are the original arbor (volume rendering on the left) and the reconstruc-
tions (overlaid surface renderings in red) of the di↵erent methods (indicated at the
top) corresponding to the best F score (given below each reconstruction) for S = 2
with respect to the available manual reconstruction.
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APP2 GPS MST PHD PNR

F = 0.792 F = 0.631 F = 0.790 F = 0.810 F = 0.838

Figure 4.17: Example neuron reconstructions of an image stack from the NCL1A data
set. Shown are the original arbor (volume rendering on the left) and the reconstruc-
tions (overlaid surface renderings in red) of the di↵erent methods (indicated at the
top) corresponding to the best F score (given below each reconstruction) for S = 2
with respect to the available manual reconstruction.

independently to acquire more evidence and to be more robust to noise and other
artifacts. The traces are subsequently refined, merged, and put into a tree repre-
sentation for further analysis. The method was evaluated on both synthetic and
real neuron images and compared against various other state-of-the-art neuron re-
construction methods (APP2, GPS, MST, PHD) using commonly used quantitative
performance measures (earlier presented F and SSD scores). To obtain realistic syn-
thetic data, a novel simulator (SWC2IMG) was developed that can turn any given
SWC file into an image stack of specified quality whose ground truth reconstruction
is the input. The evaluation on real data used about 100 single-neuron fluorescence
microscopy image stacks of widely varying quality and complexity, with correspond-
ing manual reconstructions serving as the gold standard, from three di↵erent data
sets used in the DIADEM and BigNeuron studies. The results show conclusively
that the proposed method is generally favorable and also outperforms the alternative
probabilistic neuron reconstruction method based on probability hypothesis density
(PHD) filtering, presented in a dedicated chapter of the thesis. Nevertheless, there
still remains much room for further improvement, as none of the quantitative scores
were near perfect for any of the considered methods even for high SNR levels and very
lenient distance thresholds. Possible directions for future work within the presented
probabilistic framework would be to explore other state transition and measurement
models. Alternatively, since no single method always performs best on all images of a
given data set, and the results of di↵erent methods are likely complementary, another
possible direction could be to combine multiple methods either during tracing or in a
post-processing step. The latter approach is already being explored in the BigNeuron
project. But regardless of the outcome of this e↵ort it is possible to draw a conclusion
that the method proposed throughout this chapter may already prove to be of great
use in many cases.
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APP2 GPS MST PHD PNR

F = 0.552 F = 0.513 F = 0.719 F = 0.568 F = 0.599

F = 0.553 F = 0.602 F = 0.570 F = 0.275 F = 0.661

F = 0.646 F = 0.656 F = 0.619 F = 0.447 F = 0.724

F = 0.471 F = 0.451 F = 0.413 F = 0.588 F = 0.592

Figure 4.18: Example neuron reconstructions of four image stacks from the BGN
data set. Shown are the original arbors (volume renderings on the left) and the
reconstructions (overlaid surface renderings in red) of the di↵erent methods (indicated
at the top) corresponding to the best F score (given below each reconstruction) for S
= 2 with respect to the available manual reconstruction.





Chapter Five

Automated neuron detection in
high-content fluorescence

microscopy images using machine
learning

The study of neuronal morphology in relation to function, and the development of e↵ective

medicines to positively impact this relationship in patients su↵ering from neurodegen-

erative diseases, increasingly involves image-based high-content screening and analysis. The

first critical step toward fully automated high-content image analyses in such studies is to

detect all neuronal cells and distinguish them from possible non-neuronal cells or artifacts in

the images. In this chapter, the performance of well-established machine learning techniques

is investigated for this purpose. These include support vector machines, random forests,

k-nearest neighbors, and generalized linear model classifiers, operating on an extensive set

of image features extracted using the compound hierarchy of algorithms representing mor-

phology, and the scale-invariant feature transform. The experiments performed on a dataset

of rat hippocampal neurons are presented in order to find the most suitable classifier(s) and

subset(s) of features in the common practical setting where there is very limited annotated

data for training. The results indicate that a random forests classifier using the right fea-

ture subset ranks best for the considered task, although its performance is not statistically

significantly better than some support vector machine based classification models.

Based upon: G. Mata, M. Radojević, C. Fernandez-Lozano, I. Smal, N. Werij, M. Morales, E.
Meijering, J. Rubio, “Automated neuron detection in high-content fluorescence microscopy images
using machine learning”, Neuroinformatics, in press, 2018.
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5.1 Introduction

Neurons are special cells in the sense that they codify and transmit information in
the form of action potentials. Networks consisting of many billions of neurons, such
as in the brains of higher organisms, are extraordinarily complex and perform many
di↵erent functions. Since the pioneering work of [214] it is well known that the mor-
phology of neurons vary widely in di↵erent parts of the brain and that neuronal mor-
phology and function are intricately linked. Moreover, in healthy conditions, neuronal
(sub)networks within the brain are dynamic and continuously readjust their connec-
tions during the lifetime of an organism in response to external stimuli, in order to
refine existing functions or learn new ones [13]. Conversely, in pathological conditions,
disease processes destructively alter neuronal morphology and cause progressive loss
of function, such as in Alzheimer’s and Parkinson’s disease, but also in aging [272].
Thus the study of neuronal cell morphology in relation to function, in health and
disease, is of high importance for developing suitable drugs and therapies [169].

A convenient tool to visualize large numbers of cultured cells for phenotypic pro-
filing and analysis in drug discovery is high-content fluorescence microscopy imag-
ing [8, 35, 245, 290]. By automated acquisition it produces very large amounts of
image data, which cannot be analyzed manually but require automated high-content
analysis (HCA) in order to take full advantage of all captured information. HCA
is also used increasingly in neuroscience research [6, 80, 128] and various image pro-
cessing pipelines have been developed for quantitative analysis of neuronal cells in
high-content images [47, 70, 207, 249, 271, 289, 306]. However, especially in screening
applications, where the image quality is often relatively low and may vary widely be-
tween experiments, the challenge remains to develop more accurate and more robust
image analysis methods [139,170,251].

The first critical step in any HCA pipeline is the detection of the objects of interest
in the images. It is well recognized now in many areas of microscopic image analysis
that machine learning based classification methods are an excellent choice for this
task and typically outperform non-learning methods based on manually defined rules
[10, 125, 139, 251]. However, which classifiers work best, and on which sets of image
features, may depend on the specific image data and detection task, and needs to be
determined experimentally before using HCA on a routine basis in a given application.

This chapter comprises the investigation of the performance of machine learning
methods for the specific task of detecting neuronal cells in high-content fluorescence
microscopy images as a first step toward fully automated HCA in conduced neurosci-
entific studies. An early version of this work was presented at a conference [168] while
the chapter reports on a significant extension of that work including more classifiers,
more extensive experiments and results, and a much deeper and more solid (statis-
tical) analysis and discussion of the findings. The classifiers are explored based on
precalculated image features in order to determine which combinations of classifiers
and features work best in a practical setting where there is very limited annotated
data for training. Specifically, various state-of-the-art classifiers are considered based
on support vector machines (SVM), random forests (RF), k-nearest neighbors (KNN),
and generalized linear models (in particular GLMNET), operating on more than a
thousand image features extracted using the compound hierarchy of algorithms rep-
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resenting morphology (CHARM) and the scale-invariant feature transform (SIFT).

5.2 Materials and methods

The published image data were used and publicly available software tools were em-
ployed to facilitate the reproducibility of presented study. This section successively
describes the image dataset, the used methods for extracting image features, and the
considered machine learning methods1.

5.2.1 Image dataset

The high-content image data used in this study originates from the ongoing research
aimed at discovering e↵ective treatments for neurological disorders [62, 82, 83]. The
acquisition of the images is described, their annotation, and the strategy used to
obtain a well-balanced dataset for training of the machine learning algorithms.

5.2.1.1 Image acquisition

Rat hippocampal neurons were cultured and transfected with green fluorescent pro-
tein (GFP) and imaged with a Leica SP5 automated confocal fluorescence microscope
using its Matrix modules and a 20⇥ lens. The imaged neurons, coming from a part
of the brain (the hippocampus) that is well known to be involved in higher functions
such as learning and memory [253], typically have a pyramidal soma with a complex
dendritric tree [109], and their in-vivo morphological features are well conserved in
culture conditions. Eight two-dimensional (2D) high-content images were acquired
(total size >1 GB), each with a size of about 10,000⇥ 12,000 pixels, covering ap-
proximately 70mm2 of culture dish. Each image is a mosaic made up of tiles of size
1024⇥ 1024 pixels, automatically acquired and stitched using the Leica Matrix mod-
ule. Prior to imaging, the user has to select the desired culture area within the field
of view, and the module calculates the tiles to be imaged in order to cover the chosen
area, considering 10% overlap between neighboring tiles. Each mosaic contains on the
order of 40 transfected neurons (Fig. 5.1). The used specimens usually have about
100 neurons, but more than half of them are not or only partly imaged, as they are
in di↵erent optical planes or close to the borders of the dish, making the automated
detection of relevant image structures (complete neurons) as opposed to irrelevant
image structures (incomplete neurons, astrocytes, and artifacts) quite challenging.

5.2.1.2 Image annotation

To obtain a reference dataset for training and testing of the machine learning methods,
an expert neurobiologist manually marked all the regions of interest (ROIs) containing
neurons in these images, about 400 in total. It was established upon data inspection
that relevant neurons typically cover an area of around 500 ⇥ 500 pixels in the used

1Materials and methods are available from www.unirioja.es/cu/jurubio/ANDHCFMIUML
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(a) Example high-content image. Scale bar: 500µm.

(b) Example patches considered as posi-

tives (blue squares).

(c) Example patches considered as nega-

tives (magenta squares).

Figure 5.1: Part of a high-content fluorescence microscopy image (a) where the blue
squares highlight some example patches containing neuronal structure and the ma-
genta squares depict some example patches containing background. These squares
are enlarged in (b) and (c) for a better visualization. The intensities of the shown
images are inverted compared to their originals for displaying purposes.
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Figure 5.2: Two example neurons with their expert-
marked ROIs (black squares) and their potential al-
ternative positive patch locations (gray regions). The
latter comprise all possible top-left corner positions of
patches with the same size as the given ROI and having
50% or more area overlap with that ROI.

images and therefore the ROI size was fixed to these dimensions. Using the same
window size, additional patches were automatically sampled from the remaining parts
of the images, containing all di↵erent types of irrelevant image structures. More
specifically, to ensure evenly distributed sampling of background patches across the
images, a regular grid is defined, including every patch from the grid having less
than 50% overlap with any of the neuron ROIs marked by the expert, resulting in
approximately 4,500 non-neuron patches. In the sequel, neuron ROIs are referred to
as ‘positives’ and the non-neuron image patches as ‘negatives’ (Fig. 5.1).

5.2.1.3 Dataset balancing

Due to the neuron sparseness within the image data, the patches of the negative class
far outnumbered those of the positive class, with a ratio of approximately 10:1, result-
ing in an imbalanced dataset. It is well known that the performance of classification
algorithms may be negatively impacted by the data being imbalanced [36, 49, 65, 91],
as the algorithms may overfit the majority class and underfit the minority class, and
favor the former, yielding biased results [98,148]. Approaches to deal with class imbal-
ance can roughly be divided into two categories [114,118,140]: data-level approaches,
which modify the collection of data samples to balance the class distributions, and
algorithm-level approaches, which modify the learning algorithms to alleviate their
bias, for example by introducing costs to balance the importance of the di↵erent
classes. Since the class imbalance was substantial in showcased study, and existing
algorithms were mostly used and aimed to evaluate their performance without tweak-
ing them for this particular application, the decision to oversample the minority class
was taken in order to obtain approximately the same number of samples in each class.
To this end, the popular synthetic minority oversampling technique (SMOTE) is em-
ployed [48] of which several variants exist [108,140,219]. Specifically, for each neuron
ROI marked by the expert, all patches having at least 50% overlap with that ROI
(Fig. 5.2) are also considered as potential positive samples. However, the higher the
overlap percentage of a patch, the higher the relevance of that patch, as it contains
more neuron structure. Therefore, a weight is assigned to each potential patch cor-
responding to the overlap percentage. Taking this into account, random sampling
was performed from the pool of all potential patches in order to avoid bias (Fig. 5.3).
This resulted in a positive class and a negative class each consisting of approximately
4,500 samples in total.
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5.2.2 Images features

To train the machine learning algorithms, a large number of predefined features ex-
tracted from the positive and negative image patches is used. In this study two very
comprehensive feature extraction approaches were employed: the compound hierar-
chy of algorithms representing morphology (CHARM) and the scale-invariant feature
transform (SIFT). Each of them is briefly described in this section. In the train-
ing stage of the machine learning algorithms, feature values were normalized to zero
mean and unit variance per feature over the whole data set, and constant features
were pruned.

5.2.2.1 CHARM features

For the extraction of the CHARM features, the open-source software library WND-
CHARM [186, 237] is used, which has been successful for many pattern recognition
applications in biology [236,270] as well as in astronomy [141,235] and in art [238]. It
can extract a large number of generic image descriptors and also includes a classifier
based on the weighted neighbor distance (WND) between feature vectors. However,
since the performance of this classifier was rather limited in the initial results of
this study [168], alternative machine learning algorithms were explored for specified
classification task, but using the image features calculated using this software library.
In total 1,059 CHARM features are calculated for each positive and negative patch
(recent versions of WND-CHARM can extract even more features but at an increased
computational cost).

The calculated image features can be divided into four categories: polynomial
decompositions, high-contrast features, pixel statistics, and texture descriptors. The
first category includes features based on the Zernike polynomials and Chebyshev
polynomials [110] as well as Chebyshev-Fourier statistics. Features from the second
category include various statistics calculated from the Prewitt edges [202], Gabor
wavelets [95], and object masks obtained by Otsu thresholding [187]. The third cate-
gory consists of image features calculated from the multiscale intensity histogram [113]
and various statistics based on the image moments. The last category includes the
Haralick [117] and Tamura [263] texture features. In addition, the software calcu-
lates various image transforms, including the Radon, Fourier, wavelet, Chebyshev,
and edge transforms, as well as transforms of image transforms. For more detailed
technical descriptions of all features and transforms, reader is referred to [186].

5.2.2.2 SIFT features

The SIFT algorithm [156] is another popular method which extracts meaningful fea-
tures from images for pattern recognition tasks. It has been used for a very wide
range of applications in thousands of studies, including in biomedical image analy-
sis [129,176,183,183,298,304]. The extraction of SIFT features from a patch consists
of four main steps. First, a Gaussian scale space is calculated, and potentially in-
teresting points are identified by searching over all scales and locations for extrema
in the di↵erence-of-Gaussian function. Next, key points are selected from this list of
candidates based on their measures of stability, and their precise location and scale
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are determined by model fitting. Then, based on the local gradient directions, each
key point is assigned to one or more orientations (binned angles). And lastly, orien-
tation histograms are constructed from the local gradients in a region around each
key point, relative to the key point’s assigned orientation, and the histogram entries
constitute the elements of a (typically 128-dimensional) feature vector. Normalizing
the feature vector results with a key point descriptor that is relatively invariant to
spatial distortions and changes in illumination. All key point descriptors of a patch
taken together form the SIFT features of that patch.

A problem in comparing image patches based on their SIFT features is that the
number of key points, and thus the number of descriptors, may be di↵erent for each
patch. The comparison is facilitated by applying a transform that represents each
patch by a feature vector of fixed length [296]. A very e↵ective and popular approach
to achieve this is to use the bag-of-words (BoW) model [85]. Here, all descriptors
of all available patches are divided into a fixed number of clusters by k-means clus-
tering [161], and the mean of each cluster represents a visual ‘word’, a vector of the
same dimensionality as the descriptors. Subsequently, for any given patch, each of
its descriptors is assigned to the single cluster to which it is closest according to
the Mahalanobis distance. Such mapping yields a histogram vector of fixed length
k, with each vector element being the number of patch descriptors assigned to the
corresponding cluster.

To obtain the SIFT-BoW feature vector for each positive and negative patch, the
VLFeat software library [278] is used in conjunction with MATLAB (The MathWorks
Inc.). The vector length is a user parameter, and the classification performance of the
di↵erent machine learning algorithms is evaluated for lengths of 20, 40, 60, 80, 100,
150, 200, and 230.

5.2.3 Machine learning

Four di↵erent machine learning algorithms were considered for the classification task
in this study. This section summarizes the algorithms and their hyperparameters,
explains the resampling strategies used in the training and testing of the algorithms,
and the feature selection approach.

5.2.3.1 Classification algorithms

Support Vector Machines (SVM) are one of the best known and most successful
machine learning algorithms for both classification and regression problems [32,34,275,
276]. In classification problems, the principal aim of SVM is to find the hyperplane in
the feature space that best separates the given samples (in this case neuron and non-
neuron patches), by maximizing the distance between the samples and the hyperplane
[40]. If the problem requires more complex (nonlinear) separation functions, SVM
can still be used, by employing so-called kernel functions that transform the high-
dimensional feature space such that a hyperplane (linear) can still be used as the
separation function. Generally speaking, one could interpret a kernel as a similarity
measure [279]. Di↵erent types of kernels have been proposed, the Gaussian radial
basis function (RBF) being one of the most popular [61]. Two hyperparameters need
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Figure 5.3: Example of positive patch oversampling. The background shows a high-
content fluorescence microscopy image (with intensities inverted), and the graphical
overlay shows the neuron ROIs marked by the expert (yellow squares), the top-left
corners of the patches randomly sampled from all possible patches considered as
alternative positives (red dots), and the intersection points (blue dots) of the regular
grid used for negative patch sampling (Section 5.2.1.2).

to be optimized for best performance, one related to the SVM algorithm itself, the
other related to the Gaussian RBF kernel. The first (‘cost’) is the trade-o↵ between
the misclassification of the samples and the simplicity of the decision surface. The
second (‘gamma’) is the free parameter of the Gaussian function. The grid search
used in the experiments of this study considers values 2k for integer k = �12, . . . , 12
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for both parameters.
Random Forest (RF) is another prominent machine learning algorithm for clas-

sification and regression [38]. As a classifier, it operates by randomly taking multiple
bootstrapped subsets of the data, fitting a decision tree to each one of them, and
outputting the mode of the class outputs of the individual trees. This approach re-
duces the possibility of overfitting the training dataset and generally produces more
accurate results than a single decision tree. The RF has two main hyperparameters.
The first (‘node size’) is the minimum size of the terminal nodes of the decision trees.
Throughout the experiments, integer values of 1. . . 5 were considered for this param-
eter. The second (‘mtry’) is the number of features randomly sampled as possible
candidates at each split. For this parameter, integer values of 5. . . 36 were considered.

k-Nearest Neighbor (KNN) classification operates by comparing an unclassified
patch to patches with known class labels (the reference set), then selecting the k most
similar of these patches (the nearest neighbors) according to some distance metric in
the feature space, and outputting the most frequently occurring class label of these
patches [59]. In this study, a weighted KNN algorithm is used [121,221] which employs
the Minkowski distance and classifies patches using the maximum of summed kernel
densities. This algorithm uses kernel functions to weigh the neighbors according to
their distances. The KNN algorithm requires optimization of only one hyperparameter
(‘k’), for which integer values of 3. . . 9 are considered.

Generalized Linear Model (GLMNET) via penalized maximum likelihood [93]
is a regularized statistical model whose response variable is a Bernoulli indicator used
for classification. It is based on the least absolute shrinkage and selection operator
(LASSO) [264]. Similar to the LASSO, this method simultaneously performs auto-
matic feature selection and continuous shrinkage (regularization), and is able to select
groups of correlated features. Specifically, GLMNET combines l1 and l2 penalties for
regularization, and has two hyperparameters. The first (‘alpha’) is in the range [0, 1]
and linearly weighs the contributions of the di↵erent types of penalities, with value 0
corresponding to l2 regularization, and 1 to l1 regularization. Throughout the exper-
iments, values 0, 0.15, 0.25, 0.35, 0.5, 0.65, 0.75, 0.85, and 1 were used. The second
parameter (‘lambda’) determines the degree of regularization, for which values of
0.0001, 0.001, 0.01, 0.1, and 1 were considered.

The statistical computing software tool R [206] was used in the conducted ex-
periments along with the R packages mlr [30], e1071 [173], random-Forest [150],
kknn [227], and GLMnet [93], to evaluate all the machine learning algorithms. Most
of the result plots presented in this chapter were generated using the R package gg-

plot2 [287].

5.2.3.2 Resampling strategies

The mentioned hyperparameters of the machine learning algorithms need to be op-
timized for best performance. To accomplish this, and at the same time make an
honest comparison of the algorithms under equal conditions, a nested resampling ap-
proach [31,243] is used, involving an inner loop and an outer loop. In this approach,
the actual performance assessment of the algorithms takes place in the outer loop,
implemented as three independent runs of a 10-fold cross-validation experiment, with
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Figure 5.4: Results of the initial exploratory experiment. Each of the considered
classifiers (SVM, RF, KNN, GLMNET) was evaluated for each of the described 17
feature sets according to the performance measure (AUROC) using the described
simplified resampling strategy.

stratification (to ensure having the same proportion of positive and negative samples
in all partitions of the cross-validation), where the final performance scores are ob-
tained by aggregation. In each iteration of the outer loop, the corresponding training
set is used in an inner loop, to find the optimal values of the hyperparameters of the
algorithms. The inner loop was implemented using a holdout approach, where the
given training set from the outer loop is redivided into a training subset (2/3rd of
the set) and a validation subset (1/3rd of the set), and a grid search is run on the
hyperparameters. The hyperparameter values that give the best performance are sub-
sequently used to retrain the algorithms on the given training set from the outer loop.
This nested resampling strategy is statistically sound but computationally expensive.
To make the experiments computationally feasible, the search space is discretized
using the hyperparameter values listed in the previous section.

5.2.3.3 Feature selection

Although a priori it is appropriate to consider as many features as possible, and in-
creasing computational power allows us to construct larger and larger feature sets,
in the end many features may be irrelevant or may even negatively impact the per-
formance of the machine learning algorithms. Thus the experimentation also aimed
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to investigate which of all considered features positively contribute most to the per-
formance of the algorithms in this application. Knowledge of the best features al-
lows one to build potentially better and computationally more e�cient classifiers.
Moreover, it may shed light on which image information is most relevant to the
classification task, which in turn may provide useful hints to improve the imaging
process. There exist various approaches for feature selection using machine learning
algorithms in supervised classification problems, including filter, wrapper, and em-
bedded approaches [218]. This study uses the filter approach, as it is independent
of the classifier, fast, scalable, and needs to be applied only once, after which the
di↵erent algorithms can be evaluated.

5.3 Experimental results

All experiments in this study were carried out using the BioCAI HPC cluster facility
at the University of A Coruña. The area under the receiver operating curve (AUROC)
measure is used to quantitatively assess and compare the performances of the machine
learning algorithms as it captures both Type I and Type II errors [84]. First, an initial
exploratory experiment was performed on various combinations of CHARM and SIFT
feature sets to find out which of these deserved closer investigation. An in-depth
performance evaluation of all the algorithms was conducted using the most promising
feature sets, subsequently investigating which specific features of the complete set
contributed most to the performance. Finally, an analysis was made to see whether
the di↵erences in performance of the algorithms were statistically significant or not.

5.3.1 Initial exploratory results

For the initial experiment 17 di↵erent feature sets were constructed from (combina-
tions of) the CHARM features and the SIFT features: CHARM features only (one
set), SIFT features only (eight sets, one for each of the eight BoW vector lengths), and
the union of CHARM and SIFT features (eight sets). To avoid prohibitive computa-
tion times in the cross-validation experiment (described next), it was first explored
which of these feature sets would likely yield the best classification results with the
considered machine learning algorithms. The feature sets were preprocessed by nor-
malizing each feature to zero mean and unit standard deviation over all patches,
and removing constant features (if present), to reduce the e↵ect of possible outliers.
To make this exploratory experiment more computationally feasible, a simpler re-
sampling strategy was used rather than the described one, namely a single 10-fold
cross-validation in the outer loop, and a holdout approach in the inner loop. In the
latter, the optimal hyperparameters of the classification algorithms were obtained us-
ing a grid search on 2/3rd of the training set of the outer loop, and validated on the
remaining 1/3rd. Observing the results (Fig. 5.4) indicates that both the absolute
and the relative performance of the classifiers was quite di↵erent for the di↵erent
feature sets. Specifically, for SVM and KNN, the best results were obtained with the
SIFT features alone (for su�ciently large BoW vector lengths), while the CHARM
features alone produced inferior results, and with the combination of CHARM and
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Figure 5.5: Results of the cross-validation experiment. Each of the considered clas-
sifiers (SVM, RF, KNN, GLMNET) was evaluated for each of the selected feature
sets (CHARM, SIFT230, CHARM+SIFT230) using the performance measure (AU-
ROC). The results are shown as violin plots, where the horizontal bar indicates the
median value, the vertical extent is the interquartile range, and the width indicates
the estimated probability density.

SIFT features these classifiers performed somewhere in between. For RF and GLM-
NET, on the other hand, the SIFT features alone yielded inferior results, and with
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Figure 5.6: Performance (AUROC) of the considered classifiers (SVM, RF, KNN,
GLMNET) for di↵erent feature subsets (the top 25, 100, 200, and 600 features from
the CHARM+SIFT230 set). The results are shown as violin plots, where the hori-
zontal bar indicates the median value, the vertical extent is the interquartile range,
and the width indicates the estimated probability density.

the CHARM features alone these classifiers did not fare much better, but the combi-
nation of CHARM and SIFT features (for all BoW vector lengths) produced the best
results.

Thus it was concluded that the cross-validation experiment should include both
the CHARM and SIFT feature sets alone, as well as their combination, and the only
way to reduce the computational cost of that experiment was to select a specific
SIFT-BoW vector length. Overall, the results seemed to indicate that in most cases
it is better to use larger vector lengths, and simply taking the maximum considered
length (230) is a good choice.

5.3.2 Cross-validation results

Based on the results of the initial exploratory experiment three feature sets corre-
sponding to CHARM features only, SIFT230 features only, and CHARM+SIFT230
features are selected to evaluate the four machine learning classifiers using a cross-
validation experiment, involving an outer loop (3 ⇥ 10-fold) for performance assess-
ment and an inner loop (holdout) for hyperparameter optimization as described. The
results (Fig. 5.5) show that virtually all classifiers achieved AUROC values of >95%
and, generally, SVM and RF outperformed KNN and GLMNET. Considering the
di↵erent feature sets, it is observable that all classifiers except RF achieved better
performance with the SIFT230 feature set than with the CHARM feature set. This
is interesting since the latter is much more extensive (1,059 features of many di↵erent
types) than the former (230 BoW clusters). Apparently the SIFT230 features are
more descriptive of the image content in showcased application. This is confirmed
by the results with the CHARM+SIFT230 feature set, which are consistently bet-
ter than with the CHARM feature set alone. However, whereas RF and GLMNET
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Figure 5.7: Cumulative percentages of the di↵erent types of features contained
in the four subsets (the top 25, 100, 200, and 600 features selected from the
CHARM+SIFT230 set).

performed best using the more extensive CHARM+SIFT230 set, SVM and KNN per-
formed best using the SIFT230 set alone. Overall, the best results were obtained with
the SVM classifier using the SIFT230 feature set, although SVM and RF using the
combined CHARM+ SIFT230 features performed comparably (statistical significance
is discussed in Section 5.3.4).

5.3.3 Feature selection results

Next, the complete CHARM+SIFT230 feature set was subjected to a feature selection
experiment. Specifically, the aim was to find out which features contributed most to
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the performance of the di↵erent classifiers, and whether these features alone could
yield similar or even better classification performance than using the complete set,
as that would make the classification task computationally cheaper. To this end,
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Figure 5.8: The 50 most important features from the CHARM+SIFT230: 600 feature
subset used by the best performing classifier. Importance was calculated according
to the Gini index of the RF classifier. The importance value for each feature was
averaged over all runs and folds of the cross-validation experiment.

all 1,289 features are ranked using a CForest test [258] and considered four subsets,
consisting of the top 25, 100, 200, and 600 features. The results (Fig. 5.6) agree with
those of the previous experiment in that SVM and RF consistently outperformed
KNN and GLMNET for all feature subsets. The results further indicate that the
larger the number of top features, the better the performance of all four classifiers,
but for most of them there was little improvement beyond the top 200 features. In
fact, the scores of the best performing classifiers, SVM and RF, were very similar
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for the CHARM+SIFT230:200 subset and the full CHARM+SIFT230 set, and with
smaller standard deviations (statistical significance is discussed in Section 5.3.4). This
indicates that the non-selected features provided noise rather than useful information
to the classifiers.

Analyzing the types of features contained in the four subsets (Fig. 5.7), indicates
that the top 25 subset is dominated by the SIFT features and the Zernike coe�cients
from CHARM, whereas the top 100, 200, and 600 subsets include many other types
of features (about twice as many), in roughly similar proportions. These additional
features contribute important information to the classification process, as follows from
the fact that the performance of the larger subsets is considerably better than that of
the top 25 subset. However, it remains elusive why these specific types of features are
dominant. According to the feature selection results (Fig. 5.6), the best performing
classification model is the RF using the CHARM+SIFT230:600 feature subset (AU-
ROC = 0.9784), followed very closely by the SVM using the CHARM+SIFT230:200
feature subset (AUROC = 0.9783). Studying the importance of the features in the
former model according to the Gini index [38], reveals (Fig. 5.8) that the most impor-
tant features are indeed from the SIFT set together with the Zernike coe�cients from
the CHARM set. Other important top features from the CHARM set in decreasing
order include the Tamura and Haralick textures, multiscale histograms, combined
moments, and others (Fig. 5.7).
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squares fit) and reveal
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5.3.4 Statistical analysis results

Finally the statistical significance of the results (AUROC values) of the considered
classification algorithms on the selected feature (sub)sets was examined, to see if
any particular model (combination of features and classifier with corresponding op-
timal hyperparameters) is to be preferred for this application. There exist mainly
two types of statistical test to do this: parametric and non-parametric. Although
parametric tests can be more powerful, they require normality, independence, and
heteroscedasticity of the data [87]. The first condition was checked using the Shapiro-
Wilk test [239] with the null hypothesis that the used data follows normal distribution,
eventually rejecting the null hypothesis with very significant values of W = 0.97324
and p < 2.723 · 10�11 (see also the Q-Q plot in Fig. 5.9). Since this already dis-
qualifies parametric testing, there was no need to check the other conditions. Thus
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Figure 5.10: Results of the Friedman-Finner test showing the statistical significance
of the di↵erences in performance of the considered models (classifiers SVM, RF,
KNN, and GLMNET, using any of the selected feature (sub)sets CHARM, SIFT230,
CHARM+SIFT230, and the top 25, 100, 200, and 600 features of the latter) with
respect to the control model (RF using CHARM+SIFT230:600). Performance values
(AUROC) of each model from all runs and folds of the cross-validation experiment
are summarized using the ggplot2 box plot. Significance with respect to the control
model is indicated for p > 0.05 (+), and 0.01 < p < 0.05 (*), and p < 0.01 (**).

a non-parametric test - the Friedman test [94] was used. It is known to yield conser-
vative results in the case of relatively small numbers of algorithms and datasets [97].
The null hypothesis that all models yield the same performance on used data was
rejected with very significant values of �2 = 657 and p < 2.25 · 10�10. Since this
means that at least some models are statistically significantly better or worse than
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others, subsequent examination tested for significant di↵erences between all pairs of
models using the post-hoc Finner test [89], with the control model being the RF clas-
sifier using the CHARM+SIFT230:600 feature set, as it performed best in the feature
selection experiment (Fig. 5.6).

The results (Fig. 5.10) show that several other models performed statistically
similar to the control model. These include the SVM classifier using the SIFT230
feature set or the top 100, 200, or 600 features of the CHARM+SIFT230 set. Other
statistically similar models include the RF classifier using the CHARM+SIFT230
feature set, or just the top 100 or 200 features of the latter. None of the models based
on the KNN and GLMNET classifiers performed statistically similar to the control
model.

5.4 Discussion and conclusions

The aim of the presented study was to find out which machine learning based classifi-
cation algorithms and which commonly used feature extraction algorithms would be
most suited for the task of detecting neurons in high-content fluorescence microscopy
image data typically acquired in screening experiments. To this end, four popular
classifiers (SVM, RF, KNN, GLMNET) and two popular feature extraction tools
(CHARM and SIFT) were considered, and various experiments and statistical analy-
ses performed to narrow down and compare the many possible models (combinations
of classifiers and (sub)sets of features).

Showcased results point to the conclusion that of all considered classifiers, SVM
and RF generally work best, provided they are fed with the right sets of features.
Statistically similar performance was observed with the following models: SVM using
SIFT (230 features), SVM using CHARM+SIFT (the top 100, 200, or 600 features),
and RF using CHARM+SIFT (the full 1,289 features or only the top 100, 200, or
600 features). In the course of conducted study, the potential of several alternative
features was also explored, such as the histogram of oriented gradients (HOG) [64]
and spatial pyramid matching (SPM) [143] based on sparse coding (ScSPM) [296],
but the results were not as good. In the spirit of Occam’s razor principle [81,123,126],
which considers the simplest explanation of natural phenomena to be the closest to
the truth, additional experimentation sought for the smallest possible classification
model capable of determining with high accuracy whether or not a new unseen im-
age patch contains neuron structures. Generally speaking, in order to achieve good
generalization in a classification task, it is required to have a su�cient number of
samples and to minimize model complexity [112]. Since the data used in this study is
currently rather limited, the investigation was initiated by considering state-of-the-art
classification algorithms involving explicit calculation of features, and using state-of-
the-art algorithms for extracting a very wide variety and large number of features. In
the future, when more annotated data becomes available for this study, deep learning
approaches are expected to be good and possibly superior alternatives, as they have
been very successful in many other applications [29,111,145,152,234,240,262]. To get
an impression of their performance on current data, a pilot experiment was performed
with three convolutional neural networks (CNNs). The first was a home-built network
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Figure 5.11: Example of neuron detection in high-content fluorescence microscopy
images. The images are shown with inverted intensities (dark grayscale parts) com-
pared to the original. Left: One of the eight images used in the cross-validation
experiment. Right: A new image acquired in a later experiment and not used in the
cross-validation experiment. This detection example uses the SVM classifier with the
SIFT230 feature set to classify square patches from a superimposed grid as neuron
(bright grayscale) versus non-neuron (dark grayscale). The detected neuron regions
correspond very well with the expert human annotations (blue squares). Scale bars:
500 µm.

(HBN17) with 17 convolutional layers, interspersed with six max-pooling layers, and
followed by two fully connected layers outputting the two class probabilities (neu-
ron versus background). The second network was VGG19 [244], with incorporated
modification due to the image patch sizes. Namely, in the presented study, patch
sizes are more than four times larger than what VGG19 was originally designed for.
This increases the number of network parameters and thus the memory usage to the
point that the ability to train the network on our available computers was severely
limited. Therefore the number of filters was reduced in the convolution layers by a
factor of 16. Also, the network returns only two class probabilities to match this
application. The third network was ResNet50 [119] modified so as to return only
two class probabilities. Categorical cross-entropy [101] was used as the loss function
when training the networks, and Adam [134] as the optimizer. The networks were
trained on the same balanced data set as the classifiers studied in this work and were
tested using the same 3 ⇥ 10-fold cross-validation approach. The results showed that
VGG19 performed best (median AUROC of 0.960), followed by ResNet50 (median
AUROC of 0.947), and HBN17 (median AUROC of 0.936). Clearly the networks are
as yet outperformed by the best classifiers considered in this study. Better results
may be achieved not only by acquiring more data but also by applying stronger data
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augmentation than done here. Another potential direction for future research would
be to reformulate the problem as a multiclass detection challenge, distinguishing not
only between neurons and background, but also incomplete or out-of-focus neurons,
astrocytes, and artifacts.

Achieving AUROC values between 0.97 and 0.98, the best models considered in
the present study are already very suitable for detecting neurons in high-content flu-
orescence microscopy images. As an example the model using the SVM classifier and
the SIFT230 feature set was applied to one of the dataset images (Fig. 5.11). In
addition, to investigate the generalizability, it was also applied to a new, “unseen”
image from a new experiment. In that experiment, to introduce some variability, a
transfection method with higher e�ciency [37] was used, resulting in higher intensi-
ties and larger numbers of neurons in the field of view. In both images, to detect
the neurons, a very simple and low-cost detection approach was used, where square
patches (same patch size as used throughout this study) from a superimposed grid
were classified individually as neuron versus non-neuron. If needed, more sophisti-
cated (but more computationally costly) detection schemes with higher localization
precision could be easily made, by using finer grids with overlapping patches (keeping
the same patch size) and segmenting the positive responses. In high-content fluores-
cence microscopy neuron image analysis, detection is only the first step in a much
more comprehensive pipeline developed for fully automated neuron screening, where
the actual neuron reconstruction and downstream morphological analysis is based on
much higher-resolution images taken at the locations detected in the low-resolution
high-content images. The results presented in this study indicate that machine learn-
ing approaches are very suitable for the initial detection task and can drastically
reduce the high-resolution scan time and analysis.
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[1] M. D. Abràmo↵, P. J. Magalhães, S. J. Ram, “Image processing with ImageJ”, Biophotonics
International, vol. 11, no. 7, pp. 36–43, 2004.

[2] L. Acciai, P. Soda, G. Iannello, “Automated neuron tracing methods: an updated account”,
Neuroinformatics, vol. 14, no. 4, pp. 353–367, 2016.

[3] G. Agam, S. G. Armato III, C. Wu, “Vessel tree reconstruction in thoracic CT scans with
application to nodule detection”, IEEE Transactions on Medical Imaging, vol. 24, no. 4,
pp. 486–499, 2005.

[4] A. M. Aibinu, M. I. Iqbal, A. A. Shafie, M. J. E. Salami, M. Nilsson, “Vascular intersection
detection in retina fundus images using a new hybrid approach”, Computers in Biology and
Medicine, vol. 40, no. 1, pp. 81–89, 2010.

[5] Y. Al-Kofahi, N. Dowell-Mesfin, C. Pace, W. Shain, J. N. Turner, B. Roysam, “Improved
detection of branching points in algorithms for automated neuron tracing from 3D confocal
images”, Cytometry Part A, vol. 73, no. 1, pp. 36–43, 2008.

[6] J. L. Anderl, S. Redpath, A. J. Ball, “A neuronal and astrocyte co-culture assay for high
content analysis of neurotoxicity”, Journal of Visualized Experiments: JoVE, no. 27, 2009.

[7] B. H. Anderton, L. Callahan, P. Coleman, P. Davies, D. Flood, G. A. Jicha, T. Ohm,
C. Weaver, “Dendritic changes in Alzheimer’s disease and factors that may underlie these
changes”, Progress in Neurobiology, vol. 55, no. 6, pp. 595–609, 1998.

[8] P. P. M. A. Antony, C. Trefois, A. Stojanovic, A. S. Baumuratov, K. Kozak, “Light microscopy
applications in systems biology: opportunities and challenges”, Cell Communication and
Signaling, vol. 11, no. 1, p. 24, Apr 2013.
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[72] F. Deschênes & D. Ziou, “Detection of line junctions and line terminations using curvilinear
features”, Pattern Recognition Letters, vol. 21, no. 6, pp. 637–649, 2000.

[73] E. W. Dijkstra, “A note on two problems in connexion with graphs”, Numerische Mathematik,
vol. 1, no. 1, pp. 269–271, 1959.



Bibliography 113

[74] A. Dima, M. Scholz, K. Obermayer, “Automatic segmentation and skeletonization of neurons
from confocal microscopy images based on the 3-D wavelet transform”, IEEE Transactions
on Image Processing, vol. 11, no. 7, pp. 790–801, 2002.

[75] D. E. Donohue & G. A. Ascoli, “A comparative computer simulation of dendritic morphology”,
PLoS Computational Biology, vol. 4, no. 6, pp. 1–15, 06 2008.

[76] D. E. Donohue & G. A. Ascoli, “Automated reconstruction of neuronal morphology: an
overview”, Brain Research Reviews, vol. 67, no. 1, pp. 94–102, 2011.

[77] A. Doucet, N. De Freitas, N. Gordon, “An introduction to sequential Monte Carlo methods”,
in Sequential Monte Carlo Methods in Practice, Springer, pp. 3–14, 2001.

[78] A. Doucet, S. Godsill, C. Andrieu, “On sequential Monte Carlo sampling methods for Bayesian
filtering”, Statistics and Computing, vol. 10, no. 3, pp. 197–208, 2000.

[79] W. Doyle, “Operations useful for similarity-invariant pattern recognition”, Journal of the
ACM (JACM), vol. 9, no. 2, pp. 259–267, 1962.

[80] M. Dragunow, “High-content analysis in neuroscience”, Nature Reviews Neuroscience, vol. 9,
no. 10, pp. 779–788, 2008.

[81] M. K. Ebrahimpour, M. Zare, M. Eftekhari, G. Aghamolaei, “Occam’s razor in dimension
reduction: Using reduced row Echelon form for finding linear independent features in high
dimensional microarray datasets”, Engineering Applications of Artificial Intelligence, vol. 62,
pp. 214–221, 2017.

[82] L. Enriquez-Barreto, G. Cuesto, N. Dominguez-Iturza, E. Gavilán, D. Ruano, C. Sandi,
A. Ferrandez-Ruiz, G. Mart́ın-Vázquez, O. Herreras, M. Morales, “Learning improvement
after PI3K activation correlates with de novo formation of functional small spines”, Frontiers
in Molecular Neuroscience, vol. 6, p. 54, 2014.

[83] L. Enriquez-Barreto & M. Morales, “The PI3K signaling pathway as a pharmacological target
in autism related disorders and schizophrenia”, Molecular and Cellular Therapies, vol. 4, no. 1,
p. 2, 2016.

[84] T. Fawcett, “An introduction to ROC analysis”, Pattern Recognition Letters, vol. 27, no. 8,
pp. 861–874, 2006.

[85] L. Fei-Fei & P. Perona, “A bayesian hierarchical model for learning natural scene categories”,
in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, IEEE,
pp. 524–531, 2005.

[86] L. Feng, T. Zhao, J. Kim, “neuTube 1.0: A new design for e�cient neuron reconstruction
software based on the SWC format”, Eneuro, vol. 2, no. 1, pp. ENEURO–0049, 2015.

[87] C. Fernandez-Lozano, M. Gestal, C. R. Munteanu, J. Dorado, A. Pazos, “A methodology
for the design of experiments in computational intelligence with multiple regression models”,
PeerJ, vol. 4, p. e2721, 2016.

[88] T. Ferreira & W. Rasband, “ImageJ user guide”, ImageJ/Fiji, vol. 1, 2012.

[89] H. Finner, “On a monotonicity problem in step-down multiple test procedures”, Journal of
the American Statistical Association, vol. 88, no. 423, pp. 920–923, 1993.

[90] B. P. Flannery, W. H. Press, S. A. Teukolsky, W. Vetterling, “Numerical recipes in C”, Press
Syndicate of the University of Cambridge, New York, 1992.

[91] G. Forman & M. Scholz, “Apples-to-apples in cross-validation studies: pitfalls in classifier
performance measurement”, ACM SIGKDD Explorations Newsletter, vol. 12, no. 1, pp. 49–
57, 2010.

[92] A. F. Frangi, W. J. Niessen, K. L. Vincken, M. A. Viergever, “Multiscale vessel enhancement
filtering”, in International Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI), Springer, pp. 130–137, 1998.

[93] J. Friedman, T. Hastie, R. Tibshirani, “Regularization paths for generalized linear models via
coordinate descent”, Journal of Statistical Software, vol. 33, no. 1, pp. 1–22, 2010.



114 Bibliography

[94] M. Friedman, “A comparison of alternative tests of significance for the problem of m rankings”,
The Annals of Mathematical Statistics, vol. 11, no. 1, pp. 86–92, 1940.

[95] D. Gabor, “Theory of communication. Part 1: The analysis of information”, Journal of the
Institution of Electrical Engineers-Part III: Radio and Communication Engineering, vol. 93,
no. 26, pp. 429–441, 1946.

[96] R. Gala, J. Chapeton, J. Jitesh, C. Bhavsar, A. Stepanyants, “Active learning of neuron
morphology for accurate automated tracing of neurites”, Frontiers in Neuroanatomy, vol. 8,
p. 37, 2014.
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Samenvatting

Neuronen behoren tot de belangrijkste elementen van het zenuwstelsel. Fascinatie
voor deze cellen gaat minstens terug tot het baanbrekende werk van Ramón y

Cajal, nu meer dan een eeuw geleden. Gewapend met een microscoop en gebruik-
makend van zilverkleuring, niet lang daarvoor ontdekt door Golgi, bestudeerde hij
hersenweefsels uit een groot aantal gebieden van de hersenen. Zijn bevindingen leid-
den tot het opstellen van de neuronentheorie, die stelt dat het zenuwstelsel, net als
alle andere organen in het lichaam, is opgebouwd uit afzonderlijke cellen. Golgi en
Ramón y Cajal deelden in 1906 de Nobelprijs voor Geneeskunde. Daarop volgend
grondig onderzoek naar neuronen onthulde dat deze cellen de bijzondere eigenschap
hebben dat ze signalen kunnen ontvangen en doorgeven. Daarmee regelen ze een groot
aantal lichaamsfuncties. Ook werd duidelijk dat neuronen in de verschillende delen
van de hersenen verschillende functies hebben. Afhankelijk van hun specifieke rol in
het zenuwstelsel kunnen neuronen nogal variren in hun morfologische eigenschappen.

Morfologische analyse van de verschillende soorten neuronen is daarom vaak een
belangrijk onderdeel in het onderzoek naar hun functie. Neuronen kunnen tegenwoor-
dig in groot detail en digitaal worden afgebeeld door middel van moderne lichtmicro-
scopen. Maar om de eigenschappen van een gegeven neuron daadwerkelijk te kunnen
kwantificeren is een explicietere representatie van zijn morfologie nodig dan een mi-
croscoopbeeld. Het afleiden van een grafische representatie van een neuron uit zijn
microscoopbeeld, in de vorm van een boomstructuur bestaande uit knooppunten en
vertakkingen, wordt doorgaans aangeduid als digitale reconstructie, en is het hoofd-
thema van dit proefschrift. Veel neurowetenschappelijke studies zijn afhankelijk van
een nauwkeurige beschrijving van de morfologie van neuronen in de vorm van digitale
reconstructies. Daarmee is digitale reconstructie een belangrijk technisch probleem
in neurowetenschappelijk onderzoek.

Dit proefschrift presenteert nieuwe computationele methoden voor de automati-
sche analyse van neuronen. De hoofdproblemen waarvoor oplossingen worden gepre-
senteerd zijn de detectie en de reconstructie van neuronen in digitale fluorescentie-
microscopiebeelden. Een van de belangrijkste vernieuwingen die worden voorgesteld
ten opzichte van bestaande reconstructiemethoden is het gebruik van probabilistische
filtertechnieken. Na een algemene inleiding in het eerste hoofdstuk, beschrijven de
daarop volgende hoofdstukken originele oplossingen voor de automatische detectie
van knooppunten en eindpunten van neuronen in hun afbeeldingen, het traceren van
alle vertakkingen van de neuronen in de beelden, en het vinden van neuronen in la-
geresolutiebeelden uit screeningstudies. De rest van deze samenvatting geeft kort de
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inhoud van de hoofdstukken weer.
Het tweede hoofdstuk presenteert een nieuwe methode voor de automatische de-

tectie van die punten in beelden van neuronen die van cruciaal belang zijn voor de
correcte topologische representatie van de neuronen. Het gaat hierbij vooral om de
knooppunten en de eindpunten van alle vertakkingen. Een knooppunt is een punt
waar drie segmenten van de boomstructuur bij elkaar komen, en een eindpunt is een
punt waar een vertakking van de boomstructuur eindigt. De voorgestelde detectie-
methode maakt gebruik van richtingsfilters, waarmee in elk punt van een beeld wordt
bepaald in hoeverre en in welke richting(en) er lijnachtige structuren door het punt
lopen. De gevonden informatie hierover wordt uitgedrukt in taalkundige termen die
vervolgens verwerkt worden door middel van zogeheten vage logica. Daarmee wordt
elk punt met behulp van een stelsel van regels geclassificeerd als zijnde irrelevant of
een specifiek type cruciaal punt uit de boomstructuur van het neuron. Voor dit doel
wordt een nieuw stelsel van regels en klassen voorgesteld. De kracht van de gekozen
aanpak is dat voor elk punt berekend wordt in welke mate het behoort tot elk van
de beschouwde klassen. Daardoor wordt rekening gehouden met de onzekerheid in de
beeldinformatie en het filterproces.

In het derde hoofdstuk wordt het theorema van Bayes benut om te komen tot
een nieuwe automatische methode voor het traceren van de middellijn van neuronale
vertakkingen in microscoopbeelden. In tegenstelling tot bestaande methoden is de
voorgestelde methode probabilistisch van aard en in staat om tegelijkertijd een onbe-
perkt aantal vertakkingen te traceren. Voor de implementatie van de methode wordt
gebruik gemaakt van sequentile Monte Carlo filtering. Een dergelijke aanpak wordt
ook wel gebruikt in andere toepassingen, voor het volgen van bewegende objecten over
de tijd in filmopnames. In dit hoofdstuk wordt het idee echter aangewend voor het
volgen van objecten in de ruimte in statische opnames. Om dit mogelijk te maken wor-
den nieuwe wiskundige modellen voorgesteld voor het filterproces, waarin bestaande
kennis is opgenomen over de vorm van neuronale vertakkingen en de manier waarop
ze worden afgebeeld door een microscoop. De probabilistische aard van de methode
maakt dat herhaalde toepassing op hetzelfde beeld net iets andere resultaten oplevert.
Op deze manier kan meer statistisch bewijsmateriaal worden vergaard over de vorm
van de vertakkingen dan dat deterministische methoden kunnen leveren. De gepresen-
teerde experimentele resultaten bevestigen inderdaad dat de methode nauwkeuriger
is.

Het vierde hoofdstuk tilt het idee van probabilistische tracing nog een stap ver-
der en presenteert een nieuwe methode voor automatische volledige reconstructie van
neuronen uit microscoopbeelden. Deze methode vindt niet alleen de middellijn van
individuele vertakkingen, maar maakt ook een schatting van de lokale diameter op
elk punt van de vertakkingen, en voegt alle gevonden segmenten samen tot een data-
structuur die de berekening van allerlei morfologische eigenschappen mogelijk maakt.
De methode begint met het identificeren van die gebieden in een beeld die hoogst-
waarschijnlijk neuronale vertakkingen bevatten. Voor dit doel wordt een bestaande
buisfiltermethode gebruikt. Uit de gevonden gebieden worden vervolgens startpun-
ten geselecteerd voor het traceren van de vertakkingen. Net als in het voorgaande
hoofdstuk wordt hiervoor een probabilistische aanpak gebruikt op basis van sequen-
tile Monte Carlo filtering. Ook hier levert herhaalde toepassing meer informatie over
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de vertakkingen en leidt tot betere resultaten. Tevens zij opgemerkt dat de her-
halingen onafhankelijk zijn van elkaar en zich dus uitstekend lenen voor parallelle
implementatie. Om een volledige reconstructie te verkrijgen worden de resultaten
van de verschillende herhalingen verfijnd en samengevoegd. Hiervoor worden nieuwe
iteratieve algoritmes voorgesteld. Een eerste versie van de methode is opgenomen in
een internationale vergelijkingsstudie genaamd BigNeuron, waar het als een van de
betere methoden uit de bus kwam. In dit hoofdstuk wordt een sterk verbeterde versie
gepresenteerd.

Tenslotte wordt in het vijfde hoofdstuk een haalbaarheidsstudie gepresenteerd van
het detecteren van gebieden in lageresolutiebeelden van celculturen die neuronen be-
vatten. Deze taak is doorgaans de eerste stap in screeningstudies naar de aantasting
van neuronen door neurodegeneratieve ziektes en het e↵ect van medicijnen. De ge-
vonden gebieden worden vervolgens afgebeeld op hoge resolutie, waarna de neuronen
kunnen worden gereconstrueerd met behulp van de in de vorige hoofdstukken be-
schreven methoden. De detectie in de lageresolutiebeelden wordt bemoeilijkt door
de afwezigheid van details, het feit dat de neuronen vaak niet volledig zijn afgebeeld,
de aanwezigheid van vergelijkbare cellen zoals astrocyten, en beeldvormingsartefacten
zoals (veel) ruis. Daarom is in deze studie gekozen voor het gebruik van zelflerende me-
thoden op basis van beeldkenmerken berekend door een zeer groot aantal bestaande
filtertechnieken. In de gepresenteerde experimenten worden de prestaties van vier
soorten traditionele zelflerende methoden vergeleken. Ook wordt een proefexperiment
beschreven met een tegenwoordig zeer populaire aanpak op basis van kunstmatige,
dieplerende neurale netwerken. De conclusie is echter dat op deze beperkte data de
traditionele methoden beter presteren.
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• M. Radojević, E. Meijering, “Automated neuron reconstruction from 3D flu-
orescence microscopy images using sequential Monte Carlo estimation”, Neu-
roinformatics, in press, 2018
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Stellingen
behorende bij het proefschrift

Methoden voor geautomatiseerde beeldanalyse van
neuronen

Miroslav Radojević, januari 2019.

1. Junctions and terminations of the neuron tree image can both be extracted by the

same nonlinear decision (Chapter 2 of this thesis).

2. Bayesian multi-object tracking helps separating closely running neuron fibers (Chap-
ter 3 of this thesis).

3. Tracing image structures repeatedly and in a statistically independent way yields

more evidence about the underlying neuron branches and leads to better recon-

structions (Chapter 4 of this thesis).

4. Synthetic neuron images represent useful alternatives to the real imagery for ob-

jective evaluation of neuron reconstruction algorithms (Chapter 4 of this thesis).

5. Scan time and analysis of the neuron culture in high throughput high resolution

screening can be drastically reduced by using machine learning approaches (Chap-
ter 5 of this thesis).

6. Obtaining manual annotation is inevitably subject to a degree of subjectivity

which implies the evaluations are, also, never absolutely accurate.

7. Computer algorithms are irreplaceable tools for processing the ever growing vo-

lume of neuronal image data.

8. Neuron digital reconstruction should ideally involve both local and global image

processing.

9. “Neuronal curse of dimensionality”: neuron reconstruction algorithms should be

designed right from the start to be able to deal with ever increasing data volumes.

10. Any man could, if he were so inclined, be the sculptor of his own brain (Santiago
Ramón y Cajal, Advice for a Young Investigator, 1897).

11. The plan is O.K. Only that, for some reason, the events do not stick to it (Borislav
Pekić, Rabies, 1983).
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