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Algorithm 1 Neuron tracing
1: k = 0 . Initialize

2: {ωn0|0, xn0|0}
ρN0

n=1 . Initial particle and observation set

3: {x̂0,i}N0
i=1 . Initial estimate

4: repeat

5: k = k + 1

6: pni ∼ h(p|x̂k−1,i) n ∈ [1, ρNk−1] . Draw observation particles

7: pni,j ∈ Cj, j ∈ [1,Mk] , n ∈ [1, |Cj|] . Cluster observation particles

8: zk,j =
[
pn̂i,j, τ(p

n̂
i,j)
]

. Select representative sample

9: Zk = {zk,j, . . . , zk,Mk
} . Construct observations

10: {ωnk|k, xnk|k}
ρNk
n=1, νk, {x̂k,i}

Nk
i=1 ← SMC-PHD({ωnk−1|k−1, xnk−1|k−1}

ρNk−1

n=1 ,Zk) . Algorithm 2

11: until [νk] = 0 . [·] ≡ nearest integer
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Algorithm 2 SMC-PHD filtering

1: Input:{(ωnk−1|k−1, xnk−1|k−1)}
ρNk−1

n=1 , {zk,j}Mk
j=1 . Dk−1(x) approx. observation Zk

2: for n = 1, . . . , ρNk−1 do

3: for m = 1, . . . , η do

4: i = (n− 1)η +m

5: Draw: xk|k−1,p ∼ πk|k−1(x|xnk−1|k−1)→ xik|k−1,p . Persistent object particles

6: Compute: ωik|k−1,p = pS
1
η
ωnk−1|k−1

7: Draw: xk|k−1,s ∼ βk|k−1(x|xnk−1|k−1)→ xik|k−1,s . Spawning object particles

8: Compute: ωik|k−1,s = pS
1
η
ωnk−1|k−1

9: end for

10: end for

11: {(ωnk|k−1, xnk|k−1)}
Sk
n=1 = {(ωnk|k−1,p, xnk|k−1,p)}

ρηNk−1

n=1 ∪ {(ωnk|k−1,s, xnk|k−1,s)}
ρηNk−1

n=1 . Union of

particle sets

12: for n = 1, . . . , Sk do

13: Update: ωnk|k = (1− pD)ωnk|k−1 +
∑
z∈Zk

pDgk(z|xnk|k−1
)ωn

k|k−1

Ck(z)+
∑Sk

n=1 pDgk(z|xnk|k−1
)ωn

k|k−1

14: end for

15: νk =
Sk∑
n=1

ωnk|k . Cardinality calculation

16: Estimate: x̂k,i ← {ωnk|k, xnk|k−1}
Sk
n=1 . Mean-shift clustering

17: Resample: Nk = [νk] , {ωnk|k, xnk|k−1}
Sk
n=1 → {ωnk|k, xnk|k}

ρNk
n=1, ω

n
k|k = νk/(ρNk)

. Systematic resampling with ρ particles per object
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(A) πk|k−1(x|x′) (B) βk|k−1(x|x′) (C) h(p|x′)

Figure S1: Transition densities (2D examples) for persistent (A) and spawned (B) objects with z = 0,

x′ =
[
0, 0, 0, 1√

2
, 1√

2
, 0
]
, κ = 2, and rk = 3. (C) Importance sampling used in the observation model

without the tubularity component, τ(p) = 1, and κ = 0.5. Rainbow color coding is used running from blue

(indicating low values) to red (indicating high values).
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(A) pni ∼ h(p|x̂k−1,i) (B) pni,j ∈ Cj
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Figure S2: Formation of the observations (2D example). (A) For each object i from iteration k − 1,

particles pni are sampled from the importance sampling function h, using the state estimate x̂k−1,i. The

solid dot indicates the location of x̂k−1,i and the contours represent lines of equal particle weight. (B) The

particles are processed by mean-shifting resulting in clusters Cj whose labeled particles are denoted as pni,j .

(C) Each observation zk,j is obtained from the representative cluster particle pn̂i,j as described in the main

text. Contours represent lines of equal observation likelihood. (D) The clutter intensity function.
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Figure S3: Performance as a function of numbers of seeds and rounds for four example cases from the

OPF (A-D) and the HCN (E-H) data set. Similar trends were observed for all cases in the respective data

sets. Left panel per case: Precision (P), recall (R), and F-score (F) after one round initialized with different

numbers of seeds (N0). Right panel per case: The scores after multiple rounds with a fixed number of seeds

(N0 = 40). Fifth-order polynomial curves were fit to the data to show approximate trends.
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Figure S4: Performance comparison of our method with several other methods on the OPF data set. For

each method and each measure, the plotted box indicates the 25-75 percentile, the horizontal bar indicates

the median score, and the whiskers and outliers are drawn using the default settings of R.
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Figure S5: Performance comparison of our method with several other methods on the HCN data set. For

each method and each measure, the plotted box indicates the 25-75 percentile, the horizontal bar indicates

the median score, and the whiskers and outliers are drawn using the default settings of R.
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Figure S6: Ability of the tested methods to separate two fibers of similar intensity and scale running closely

in parallel. The examples show cases with gradually increasing distance between the fibers: overlap (left

column), just separated (middle column), and clearly separated (right column). The tracing results of PHD,

GPS, APP2, MST are overlaid (with slight offset) in red color.
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Figure S7: Ability of the tested methods to separate three fibers with different intensity and scale running

closely in parallel. The examples show cases with gradually increasing distance between the fibers: overlap

(left column), just separated (middle column), and clearly separated (right column). The tracing results of

PHD, GPS, APP2, MST are overlaid (with slight offset) in red color.
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